• Title/Summary/Keyword: Silt and clay

Search Result 448, Processing Time 0.025 seconds

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

Comparison of Tn-situ Characteristics of Soft Deposits Using Piezocone and Dilatometer (피에조 콘과 딜라토메터 시험을 이용한 연약지반의 현장특성 비교)

  • 김영상;이승래;김동수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.45-56
    • /
    • 1998
  • In order to select a proper ground improvement technology and to assess the quality and rate of improvement in the soft deposits. it is essential to characterize in-situ properties of the soft marine clay layer that may have many thin silt or sand seams. In this paper, both piezocone and flat dilatometer tests were performed to characterize in situ properties of a marine clay. Both tests provided quite similar site classifications, and in both tests the penetration pore water pressure was the better indicator for the classification of marine clay layer, especially in which sand or silt seams are frequently interbedded. Undrained strengths determined by both the cone tip resistance and the excess pore water pressure measured from piezocone were very similar in clayey soil layers. And the untrained strength determined by dilatometer had an approximately average value of undiained strengths obtained from piezocone. In addition, the theoretical time factor that can consider pore pressure dissipation effect during cone penetration may provide a reliable estimation of the coefficient of consolidation, especially for a coastal site which includes many silt or sand fractions or seams.

  • PDF

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Characteristics of Heavy Metal Distribution in Bottom Sdeiments of Tributaries of the Han River (한강유역 주요지천의 저질내 중금속 분포)

  • 허준무;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.71-79
    • /
    • 1999
  • The Hg, Cd, Cu, Mn, and Zn in bottom sediments of han river and their tributaries were analyzed to evaluate the seasonal variations of heavy metals. Leaching tests were also performed for estimation of availability of heavy metal retention in sediments. Sediments of Anyang stream showed the highest concentration of heavy metal in the sediment samples. Heavy metal concentration was heavily depended upon the heavy metal source of tributaries of han river and particle distribution. Clay and silt had higher concentration of heavy metals than very fine san and fine sand due to difference of retention capability of heavy metal. The highest concentration of heavy metal was observed in bottom sediments irrespective of sites investigated. Heavy metals and ignition loss showed positive relations, and higher relationships with p-value <0.01 were observed between copper and lead. copper and zinc, and depended on the pH condition of leaching test, and leachated fraction increased with decrease of the pH.

  • PDF

Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests (현장시험을 이용한 인천 송도지반의 변동성 분석)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Lee, Ju-Hyung;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

Organic Pollutant Transport in Unsaturated Porous Media by Atmospheric Breathing Process(II) Dispersion Coefficient (불포화토양에서 확산에 의한 유기오염물질의 이동)

  • 구자공;황종혁
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.79-82
    • /
    • 1997
  • 토양내에서 오염유기물질이 불포화토양내에 유입될 때의 dispersion coefficient를 adsorption과 desorption과정에 대해 알아보았다. apparent dispersion coefficient를 측정하기 위해 일상적인 상대습도(46%)조건에서 parametric analysis를 행하였다. 실험에 사용된 토양은 fine sand와 silt-clay혼합시료였고, 흐름방향은 상향과 하향으로 하였다. 그리고, Freon gas를adsorbing solute로 사용하였다. 오염물질로는 DCM, TCE, DCB를 사용하였다. 분석을 위해서 linear와 probability scale의 breakthrough curve를 사용하였다. 공기에서의 diffusion coefficient의 예측을 위하여 Graham's law를 계산에 사용하였고, DCM diffusion coefficient는 0.098$\textrm{cm}^2$/s로 계산되었다. 연구결과, adsorption과 desorption의 속도는 차이가 있는 것으로 나타났으며, diffusion이 flow regime을 좌우하는 것으로 나타났다. 그리고, desorption에서의 D$^{a}$ D$^{o}$ 는 1보다 클수도 있다. 또한, dispersion은 silt-clay혼합시료에서의 속도와 함께 증가한다. dispersion은 Freon의 sorption방향에 크게 의존한다.

  • PDF

KATSTIC SINKHOLE SEDIMENTS OF DOLOSTONE IN THE UPPER MIDWEST'S DRIFTLESS AREA, USA

  • Oh, Jong-woo
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.78-104
    • /
    • 1993
  • Analysis of one sinkhole, the Dodgeville sinkhole, developed in Ordovician dolostones in the Driftless Area of Wisconsin in the Upper Midwest'd Driftless Area reveals homogenous clayey sediment fills reflecting a range of dissolutional processes during the Quaternary or Pre-Quaternary. Granulometric analysis, graphical moments statistics, carbonate minerals, ana sand grain lithology were used to differentiate sinkhole sediment sources and modes of accumulation. Sediments in the dolostone sinkholes developed by dissolution. Sediments contain two major types of sediments : residual redish clay( autogenic sediments) and aeolian silt (allogenic sediments). The massive clay is generated from the weathered dolostone bedrocks as a in situ materials. The loessial silt is mostly derived from transportation of the surrounding surface materials, with some evidences of penetrated deposition. Unlike the collapsed sandstone sinkholes (Oh et al., 1993), dolostone sinkholes reveal homogenous, autogenic clay materials, and a geochemical composition indicative of in situ autogenic karstification. Dolostone sinkhole si1ts (26.9%) and sands (34.9%) are derived from weathered Plattevi1le-Galena dolostones, and contain high carbonate(37.5%), chert (57.2%) and lead ore (3%). Graphical moments statistics for sorting, skewness, and kurtosis indicate that sand grains from dolostones were derived entirely from local bedrock by in situ dissolution. Upper sinkhole sediments are pedagogically very young as carbonate is unleashed. Materials of the sinkhole sediment are definitely inherited from internal dolostones by dissolution and weathering, because not only a granulomatric comparison of dolostone and sandstone sediments demonstrates that they have heterogeneous paticle size distributions, but also 1ithologic analyses displays they differ completely.

  • PDF

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Assessment of methane emission with application of rice straw in a paddy field

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun Il;Gwon, Hyo Suk;Lee, Jong Sik;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.857-868
    • /
    • 2019
  • A flooded rice field is one of the significant sources of anthropogenic methane (CH4) with the intensity of the emissions dependent on management practices. Incorporation of rice straw, which is one of the organic amendments, induces the increase of methane emissions during the flooding season. In this study, we measured of methane emission according to applications of rice straw in different soil textures during a cultivation period in 2017 and 2018. The fallow treatments were non application of rice straw (NA), spring plowing after spring spreading of rice straw (SPSA), spring plowing after previous autumn spreading of rice straw (SPAA), and autumn plowing after previous autumn spreading of rice straw (APAA). The SPSA treatment emitted the highest total methane from loam soil in both 2017 (596.7 CH4 kg ha-1) and 2018 (795.4 CH4 kg ha-1). The same trend was observed in silt clay loam soil; the SPSA treatment still emitted the highest amount of methane in both 2017 (845.9 CH4 kg ha-1) and 2018 (1,071.7 CH4 kg ha-1). The lowest emission among the rice straw incorporated plots came from the APAA treatment for both soil texture types in all the seasons. The conversion factors of the SPAA were 0.79 and 0.65 from the loam and silt clay loam soils, respectively. Relatedly, the conversion factors of the APAA were 0.71 and 0.43 from the loam and silt clay loam soils, respectively. The above observations mean therefore that incorporation of rice straw early in the fallow reduces methane emissions in the main rice growing season.

Determination of moisture threshold for solution sampling in different soil texture (토양용액 채취를 위한 토성별 한계수분함량 설정)

  • Lee, Chang Hoon;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Kang, Seong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.