• Title/Summary/Keyword: Signal-to-noise ratio estimation

Search Result 342, Processing Time 0.029 seconds

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

Study on the Amplitude Modification Audio Watermarking Technique for Mixed Music with High Inaudibility (높은 비가청성을 갖는 믹스 음악의 크기 변조 오디오 워터마킹 기술에 관한 연구)

  • Kang, Se-Koo;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • In this paper, we propose a watermarking technology for a mixed music. The mixed music means recreated music that contained a number of musics in one audio clip. Royalty associated with the audio content is typically imposed by the full audio content. However, the calculation of royalties gives rise to conflict between copyright holders and users in the mixed music because it uses not full audio content but a fraction of that. To solve the conflict related with the mixed music, we propose a audio watermarking technique that inserts different watermarks for each audio in the audio that make up the mixed music. The proposed watermarking scheme might have poor SNR (signal to noise ratio) to embed to each audio clip. To overcome poor SNR problem, we used inaudible pseudo random sequence which modifies typical pseudo random sequence to canonical signed digit (CSD) form. The proposed method verifies the performance by each watermark extraction and the time internal estimation valies from the mixed music.

Estimation of the Depth of Embedded Sheet Piles Using Two Types of Geophysical Loggings (다종 물리검층을 통한 시트파일 근입 심도 추정 연구)

  • Hwang, Sungpil;Kim, Wooseok;Jeoung, Jaehyeung;Kim, Kiju;Park, Byungsuk;Lee, Chulhee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • This investigation used two different geophysical logging techniques to confirm the depth to which a sheet pile was driven. Depth was estimated through analysis of the movement speed and three-component movement directions of a P-wave transmitted through the ground. It was also estimated by pole-pole and pole-dipole methods using electrical data logging to measure apparent resistivity. The two methods' respective results were 9.0 m (±1.5 m) and 7.5 m. As field ground conditions will include mixtures of various materials, electrical data logging is judged to be suitable for assessing depth due to its low signal-to-noise ratio.

An image sequence coding using motion-compensated transform technique based on the sub-band decomposition (움직임 보상 기법과 분할 대역 기법을 사용한 동영상 부호화 기법)

  • Paek, Hoon;Kim, Rin-Chul;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In this paper, by combining the motion compensated transform coding with the sub-band decomposition technique, we present a motion compensated sub-band coding technique(MCSBC) for image sequence coding. Several problems related to the MCSBC, such as a scheme for motion compensation in each sub-band and the efficient VWL coding of the DCT coefficients in each sub-band are discussed. For an efficient coding, the motion estimation and compensation is performed only on the LL sub-band, but the discrete cosine transform(DCT) is employed to encode all sub-bands in our approach. Then, the transform coefficients in each sub-band are scanned in a different manner depending on the energy distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distribution of each sub-band. The performance of the proposed MCSBC technique is intensively examined by computer simulations on the HDTV image sequences. The simulation results reveal that the proposed MCSBC technique outperforms other coding techniques, especially the well-known motion compensated transform coding technique by about 1.5dB, in terms of the average peak signal to noise ratio.

  • PDF

Development of Loop Filter Design of Plucked String Instruments (개선된 발현악기의 루프 필터 설계 방법)

  • Cho, Sang-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • This paper describes a development of a loop filter design in a physical modeling of the plucked string instrument. The conventional method proposed by V$\"{a}$lim$\"{a}$ki cannot estimate right parameters if a sound has either very short sustain or no sustain. In order to overcome this drawback, we propose the use of the decay region and 5 to 20 harmonics of the sound in the estimation of loop filter parameters. The most appropriate filter coefficient is chosen by frequency signal to noise ratio. To verify the performance of the proposed method, the guitar, gayageum and geomungo were selected as the target because they have different shape, structure, and material of strings. Regardless of the duration of harmonics, the proposed method was able to estimate the loop filter parameters representing frequency-dependent damping of harmonics.

SE-CAC: A Novel Call Admission Control Scheme for Multi-service IDMA Systems

  • Ge, Xin;Liu, Gongliang;Mao, Xingpeng;Zhang, Naitong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1049-1068
    • /
    • 2011
  • In this paper a simple and effective call admission control (CAC) scheme is proposed for the emerging interleave-division multiple-access (IDMA) systems, supporting a variety of traffic types and offering different quality of service (QoS) requirements and priority levels. The proposed scheme is signal-to-interference-plus-noise ratio (SINR) evolution based CAC (SE-CAC). The key idea behind the scheme is to take advantage of the SINR evolution technique in the process of making admission decisions, which is developed from the effective chip-by-chip (CBC) multi-user detection (MUD) process in IDMA systems. By virtue of this semi-analytical technique, the MUD efficiency can be estimated accurately. Additionally, the computational complexity can be considerably reduced. These features make the scheme highly suitable for IDMA systems, which can combat intra-cell interference efficiently with simple CBC MUD. Analysis and simulation results show that compared to the traditional CAC scheme considering MUD efficiency as a constant, the proposed SE-CAC scheme can guarantee high power efficiency and throughput for multimedia traffic even in heavy load conditions, illustrating the high efficiency of CBC MUD. Furthermore, based on the SINR evolution, the SE-CAC can make accurate estimation of available resource considering the effect of MUD, leading to low outage probability as well as low blocking and dropping probability.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.

A Fast Block Matching Algorithm using Unit-Diamond and Flat-Hexagonal Search Patterns (단위 다이아몬드와 납작한 육각패턴을 이용한 고속 블록 정합 알고리즘)

  • 남현우;위영철;김하진
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the unit-diamond search pattern and the flat-hexagon search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the unit-diamond search pattern, and then fastly finds the other motion vectors that are not close to the center of search window using the flat-hexagon search pattern. Through experiments, compared with the hexagon-based search algorithm(HEXBS), the proposed unit-diamond and flat-hexagonal pattern search algorithm(UDFHS) improves as high as 11∼51% in terms of average number of search point per motion vector estimation and improves about 0.05∼0.74㏈ in terms of PSNR(Peak Signal to Noise Ratio).

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Phase Tracking for Orthogonal Frequency Division Multiplexing Systems (직교 주파수 분할 다중화 시스템을 위한 위상 오차 추적)

  • Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.61-67
    • /
    • 2006
  • This paper proposes the algorithm for tracking of the residual phase errors incurred by carrier frequency offset and sampling frequency offset in the orthogonal frequency division multiplexing (OFDM) systems which are suitable for high data rate wireless communications. In the OFDM systems the subcarriers which are orthogonal to each other are modulated by digital data and transmitted simultaneously. The carrier frequency offset causes degradation of signal to noise ratio(SNR) performance and interference between the adjacent subcarriers. The errors in the sampling timing caused by the sampling frequency difference between the transmitter and the receiver sides also cause a major performance degradation in the OFDM systems. The residual error tracking and compensation mechanism is essential in the OFDM system since the carrier and the sampling frequency offset cause the loss of orthogonality resulting in the system performance loss. This paper proposes the scheme where the channel gain and the payload data information are reflected in the residual error tracking process which results in the reduction of the estimation error and the tracking performance improvements under the frequency selective fading wireless channels.