DOI QR코드

DOI QR Code

Development of Loop Filter Design of Plucked String Instruments

개선된 발현악기의 루프 필터 설계 방법

  • 조상진 (울산대학교 전기공학부)
  • Received : 2011.01.19
  • Accepted : 2011.02.15
  • Published : 2011.02.28

Abstract

This paper describes a development of a loop filter design in a physical modeling of the plucked string instrument. The conventional method proposed by V$\"{a}$lim$\"{a}$ki cannot estimate right parameters if a sound has either very short sustain or no sustain. In order to overcome this drawback, we propose the use of the decay region and 5 to 20 harmonics of the sound in the estimation of loop filter parameters. The most appropriate filter coefficient is chosen by frequency signal to noise ratio. To verify the performance of the proposed method, the guitar, gayageum and geomungo were selected as the target because they have different shape, structure, and material of strings. Regardless of the duration of harmonics, the proposed method was able to estimate the loop filter parameters representing frequency-dependent damping of harmonics.

본 논문에서는 발현악기 물리적 모델링에서의 개선된 루프필터 설계 방법을 제안한다. V$\"{a}$lim$\"{a}$ki가 제안한 기존의 루프필터 설계 방법은 악기의 음이 오래 지속되는 경우에는 타당하지만, 그렇지 못한 경우에는 악기 음의 주파수 의존 감쇠를 표현하지 못하는 문제점이 있다. 이를 해결하기 위해 녹음된 악기의 단위음에 대해 감쇠구간을 선택, 배음의 개수를 최소 5개부터 20개까지 변경하며 루프필터의 파라미터를 추정하고 이를 이용한 합성음과 원 신호 간 주파수 영역에서의 신호 대 잡음비가 가장 좋은 파라미터를 선택한다. 제안한 방법의 성능 검증을 위해 몸통의 구조와 현의 재질이 각각 다른 기타, 가야금, 거문고를 대상악기로 선정하였다. 제안한 방법은 배음의 지속시간에 상관없이 악기 음의 주파수 의존 감쇠를 잘 표현하는 루프필터 파라미터를 추정해 낼 수 있었다.

Keywords

References

  1. C. Roads, The computer music tutorial, The MIT press, London, 1996.
  2. G. Fant, Acoustic theory of speech production, The Hague, Mouton, 1960.
  3. J. O. Smith, Physical audio signal processing: Singing Kelly- Lochbaum Vocal Tract, http://ccrma.stanford.edu/-jos/pasp/ Singing_Kelly_Lochbaum_Vocal_Tract.html, 2007.
  4. J. Kelly, and C. Lochbaum "Speech synthesis," Proc. 4th Intl. Congr. Acoustics, pp. 1-4, 1962.
  5. J. O. Smith, "Music applications of digital waveguides," Technical Report STAN-M-39, CCRMA, Dept. of Music, Stanford University, 1987.
  6. L. Hiller and J. Beauchamp, "Review of completed and proposed research on analysis and synthesis of musical sounds by analog and digital techniques," Technical Report 19, Experimental Music Studio, University of Illinois, 1967.
  7. P. Ruiz, "A technique for simulating the vibrations of strings with a digital computer," M. M. thesis, School of Music, University of Illinois, 1970.
  8. L. Hiller and P. Ruiz, "Synthesizing sounds by solving the wave equation for vibrating objects." J. Audio Eng. Soc., Part1: vol. 19, no. 6, pp. 462-470
  9. M. McIntyre, R. Schumacher and J. Woodhouse, "On the oscillations of musical instruments," J. Acoust. Soc. Am., vol. 74, no. 5, pp. 1325-1345, 1983. https://doi.org/10.1121/1.390157
  10. M. McIntyre, and J. Woodhouse, "On the fundamentals of bowed string dynamics," Acustica, vol. 43, no. 2, pp. 93-108, 1979.
  11. R. Schumacher "Ab initio calculations of the oscillations of a clarinet," Acustica, vol. 48, no. 2, pp. 72-85, 1981.
  12. K. Karplus and A. Strong, "Digital synthesis of plucked string and drum timbres," Comput. Music J., vol. 7, no. 2, pp. 43-55, 1983. https://doi.org/10.2307/3680062
  13. D. A. Jaffe and J. O. Smith, "Extensions of the Karplus- Strong plucked-string algorithm," Comput. Music J., vol. 7, no. 2, pp. 56-69, 1983. https://doi.org/10.2307/3680063
  14. J. O. Smith, "Techniques for digital filter design and system identification with application to violin," Ph.D Thesis, Stanford University, 1983.
  15. J. O. Smith, "Physical modeling using digital waveguides," Comput. Music J., vol. 16, no. 4, pp. 74-91, 1992. https://doi.org/10.2307/3680470
  16. S. A. Van Duyne, J. R. Pierce, and J. O. Smith, "Traveling wave implementation of a lossless mode-coupling filter and the wave digital hammer," Proc. Intl. Comput. Music Conf., pp. 411-418, 1994.
  17. S. A. Van Duyne and J. O. Smith, "Physical modeling with the 2-D digital waveguide mesh," Proc. Intl. Comput. Music Conf., pp. 40-47, 1993.
  18. L. Savioja, T. J. Rinne, and T. Takala, "Simulation of room acoustics with a 3-D finite difference mesh," Proc. Intl. Comput. Music Conf., pp. 463-466, 1994.
  19. M. Karjalainen and U. K. Laine, "A model for real-time sound synthesis of guitar on a floating-point signal processor," Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal Processing, vol. 5, pp. 3653-3656, 1991.
  20. M. Karjalainen, V. Valimaki, and Z. Janosy, "Toward highquality sound synthesis of the guitar and string instruments," Proc. Intl. Comput. Music Conf., pp. 56-63, 1993.
  21. J. O. Smith, "Efficient synthesis of stringed musical instruments," Proc. Intl. Comput. Music Conf., pp. 64-71, 1993.
  22. C. S. Sullivan, "Extending the Karplus-Strong algorithm to synthesize electric guitar timbers with distortion and feedback," Comput. Music J., vol. 14, no. 3, pp. 26-37, 1990. https://doi.org/10.2307/3679957
  23. V. Valimaki, J. Huopaniemi, M. Karjalainen, and Z. Janosy, "Physical modeling of plucked string instruments with application to real-time sound synthesis," J. Audio Eng. Soc., vol. 44, no. 5, pp. 331-353, 1996.
  24. M. R. Schroeder, "New Method for Measuring Reverberation Time," J. Acoust. Soc. Am., vol. 37, pp. 409-412, 1965. https://doi.org/10.1121/1.1909343
  25. 조상진, 정의필, "안족이 있는 악기의 개선된 현의 모델 개발", 한국음향학회지, 26권, 7호, 328-333쪽, 2007.

Cited by

  1. Transmission Line Based Plucked String Model vol.32, pp.4, 2013, https://doi.org/10.7776/ASK.2013.32.4.361