• 제목/요약/키워드: Signal Timing

검색결과 571건 처리시간 0.021초

VSB 수신기를 위한 반송파 위상 오차에 독립적인 심벌 타이밍 옵셋 추정 알고리즘에 대한 연구 (An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers)

  • 신성수;김준태
    • 방송공학회논문지
    • /
    • 제16권1호
    • /
    • pp.85-95
    • /
    • 2011
  • 본 논문에서는 VSB 수신기를 위한 반송파 위상 오차에 독립적인 심벌 타이밍 옵셋 추정 알고리즘을 제안한다. 심벌 타이밍 옵셋 추정에 대표적인 알고리즘인 가드너 방법은 반송파 위상 옵셋이 포함된 VSB 수신기에서는 타이밍 옵셋을 추정할 수 없다. 본 논문에 서는 수신신호의 공액 곱 연산을 통하여 신호의 스펙트럼을 확장하고 반송파 위상 옵셋을 상쇄 하였고, 그 후 가드너 알고리즘을 통하여 인접 스펙트럼 간의 중복부분을 발생시켜, 타이밍 옵셋을 추정하는 방식을 연구하였다. 시뮬레이션 결과, 제안하는 알고리즘은 VSB 수신기에서 반송파 위상 오차에 영향을 받지 않고, 정확하게 타이밍 옵셋을 추정할 수 있는 것으로 나타났다.

심자도 신호획득을 위한 실시간 256-채널 12-bit 1ks/s 하드웨어 (Real-time 256-channel 12-bit 1ks/s Hardware for MCG Signal Acquisition)

  • 유재택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권11호
    • /
    • pp.643-649
    • /
    • 2005
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUD) sensors for precise MCG(MagnetoCardioGram) signal acquisitions. Such system needs to deal with hundreds of sensors, requiring fast signal sampling md precise analog-to-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit in 1 ks/s speed, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and specially designed parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 mili-second sampling interval. We extend the design into 256-channel hardware and analyze the speed .using the measured data from the 64-channel hardware. Since our design exploits full parallel processing, Assembly level coding, and NOP(No Operation) instruction for timing control, the design provides expandability and lowest system timing margin. Our result concludes that the data collection with 256-channel analog input signals can be done in 201.5us time-interval which is much shorter than the required 1 mili-second period.

마이크로컴퓨터를 이용한 가솔린 기관용 전자제어장치의 개발에 관한 연구 (A Study on the Development of an Electronic Control Unit for a Gasoline Engine using Microcomputer)

  • 김태훈;조진호
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.224-237
    • /
    • 1995
  • An ECU(Electronic Control Unit) with 16 bit microcomputer has been developed. This system includes hardware and software for more precise control on fuel injection, ignition timing, and idle speed. This control system employs an air flow sensor of the hot wire type, a direct ignition system, an idle speed control system using a solenoid valve, and a crank angle sensor. Especially, the crank angle sensor provides two separate signals: One is the position signal(POS) which indicates 180 degree pulses per revolution, and the other is the reference signla(REF) that represents each cylinder individually. The conventional engine control system requires at least two engine revolutions in order to identify the cylinder number. However, the developed engine control system can recognize the cylinder number within a quarter of an engine revolution. Therfore, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately, Furthermore, the number of misfire reduces during the cold start.

  • PDF

귀환 채널 추정 및 RFP 성능을 개선한 간섭 제거 기반의 동일 채널 중계기 (An Interference Canceller-based Digital On-Channel Repeater to Improve Feedback Channel Estimation and RFP Performance)

  • 최수철;조기량
    • 방송공학회논문지
    • /
    • 제21권2호
    • /
    • pp.261-267
    • /
    • 2016
  • 본 논문에서는 타이밍 오프셋 보상을 위한 위상 전 왜곡 기법, 파일럿 성분 추정과 제거를 위한 직류 제거기, 송수신 신호 사이의 상관도를 기반으로 귀환 신호의 지연 시간을 추정하는 기법을 이용한 DAB(Digital Audio Broadcasting)용 간섭 제거 기반 동일 채널 중계기를 제안하고, 이를 ATSC(Advanced Television Systems Committee)시스템에 적용한다. 제안한 간섭 제거 기반의 동일 채널 중계기는 주송신 신호보다 간섭 신호가 더 큰 환경에서의 간섭 제거 능력이 확인되었으며, 이에 따라 중계기의 송출 능력의 개선, 짧은 처리 지연 시간과 더불어 양호한 신호 품질이 얻어짐을 시뮬레이션을 통하여 확인한다.

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

Receiver Design for Satellite Navigation Signals using the Tiered Differential Polyphase Code

  • Jo, Gwang Hee;Noh, Jae Hee;Lim, Deok Won;Son, Seok Bo;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.307-313
    • /
    • 2021
  • Modernized GNSS signal structures tend to use tiered codes, and all GNSSs use binary codes as secondary codes. However, recently, signals using polyphase codes such as Zadoff-Chu sequence have been proposed, and are expected to be utilized in GNSS. For example, there is Tiered Differential Polyphase Code (TDPC) using polyphase code as secondary code. In TDPC, the phase of secondary code changes every one period of the primary code and a time-variant error is added to the carrier tracking error, so carrier tracking ambiguity exists until the secondary code phase is found. Since the carrier tracking ambiguity cannot be solved using the general GNSS receiver architecture, a new receiver architecture is required. Therefore, in this paper, we describe the carrier tracking ambiguity and its cause in signal tracking, and propose a receiver structure that can solve it. In order to prove the proposed receiver structure, we provide three signal tracking results. The first is the differential decoding result (secondary code sync) using the general GNSS receiver structure and the proposed receiver structure. The second is the IQ diagram before and after multiplying the secondary code demodulation when carrier tracking ambiguity is solved using the proposed receiver structure. The third is the carrier tracking result of the legacy GPS (L1 C/A) signal and the signal using TDPC.

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

Choice of Efficient Sampling Rate for GNSS Signal Generation Simulators

  • Jinseon Son;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.237-244
    • /
    • 2023
  • A signal generation simulator is an economical and useful solution in Global Navigation Satellite System (GNSS) receiver design and testing. A software-defined radio approach is widely used both in receivers and simulators, and its flexible structure to adopt to new signals is ideally suited to the testing of a receiver and signal processing algorithm in the signal design phase of a new satellite-based navigation system before the deployment of satellites in space. The generation of highly accurate delayed sampled codes is essential for generating signals in the simulator, where its sampling rate should be chosen to satisfy constraints such as Nyquist criteria and integer and non-commensurate properties in order not to cause any distortion of original signals. A high sampling rate increases the accuracy of code delay, but decreases the computational efficiency as well, and vice versa. Therefore, the selected sampling rate should be as low as possible while maintaining a certain level of code delay accuracy. This paper presents the lower limits of the sampling rate for GNSS signal generation simulators. In the simulation, two distinct code generation methods depending on the sampling position are evaluated in terms of accuracy versus computational efficiency to show the lower limit of the sampling rate for several GNSS signals.

다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계 (LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems)

  • 손재훈;정준우;오상헌;박준민;황동환
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.