• Title/Summary/Keyword: Side chain cleavage

Search Result 25, Processing Time 0.023 seconds

Recent Discovery of Bioactive Natural Products from Taiwanese Marine Invertebrates

  • Shen, Ya-Ching
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.225-231
    • /
    • 2006
  • The secondary metabolites from Taiwanese marine soft corals and sponges have attracted much attention because they possess considerable potential biological activities. To explore the origin of bioactivity, many cytotoxic natural products were isolated and characterized in the past few years. For examples, The lipophilic extracts from marine sponges Petrosia elastica and Ircinia formosana were found active against several human tumor cells. The investigation of the gorgonian Junceela has also resulted in the discovery of a series of new juncenolides. Bioassay-directed fractionation of Clavularia viridis yielded seven new prostanoids. These compounds have been tested and evaluated as potential antitumor agents. The soft corals of the genus Cespitularia produced novel secondary metabolites with diverse chemical structures and interesting biological activities. Four new norditerpenoids, designated cespitulactones and cespihypotins were isolated from Cespitularia hypotentaculata. Cespitulactones are novel structures having a bond cleavage between C-10 and C-11. In addition, three novel diterpenes were isolated from C. taeniata and designated cespitulactams A, B and C having a phenylethyl amino side chain.

  • PDF

H-1, C-13, and N-15 resonance assignments of ENOD40B, a plant peptide hormone

  • Young Kee Chae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • t ENOD40B, a plant peptide hormone, was doubly labeled with C-13 and N-15 by recombinant production in Escherichia coli. The peptide was prepared by affinity chromatography followed by protease cleavage and reverse-phase chromatography. To elucidate the mode of action against its receptor, sucrose synthase, we proceeded to assign the backbone and side-chain resonances using a set of double and triple resonance experiments. This result will be used to determine the three-dimensional structure of the peptide at its bound state as well as to observe the chemical shift changes upon binding.

Characterization of Pyrolytic Lignin in Biooil Produced with Yellow Poplar (Liriodendron tulipifera) (백합나무 바이오오일에서 회수한 열분해리그닌(Pyrolytic Lignin)의 화학적 특성)

  • Kim, Kwang-Ho;Moon, Sun-Joo;Kim, Tai-Seung;Lee, Soo-Min;Yeo, Hwan-Myeong;Choi, In-Gyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.86-94
    • /
    • 2011
  • Pyrolytic lignin was obtained from biooil produced with yellow poplar wood. Fast pyrolysis was performed under various temperature ranges and residence times using fluidized bed type reactor. Several analytical methods were adopted to characterize the structure of pyrolytic lignin as well as the effect of pyrolysis temperature and residence time on the modification of the lignin. The yield of pyrolytic lignin increased as increasing pyrolysis temperature and decreasing residence time of pyrolysis products. The molecular weight of pyrolytic lignin determined by gel permeation chromatography (GPC) was approximately 1,200 mol/g, which was approximately a tenth of milled wood lignin (MWL) purified from the same woody biomass. Based on analytical data, demethoxylation and side chain cleavage reaction were dominantly occurred during fast pyrolysis.

Partial Lipectomy of the Epididymal Fat Alters Expression of the Steroidogenic Enzymes in the Mouse Testis at Different Postnatal Ages

  • Yong-Seung Lee;Ki-Ho Lee
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • The epididymal fat is a type of gonadal adipose tissue, which is localized closely to the testis. Even though it has been suggested that the epididymal fat is necessary for maintenance of spermatogenesis in the testis, the influence of epididymal fat on expression of testicular steroidogenic enzymes has not been examined. In the present research, expressional changes of steroidogenic enzymes in the mouse testis after 2 weeks of the surgical partial lipectomy of epididymal fat at different postnatal ages were determined by real-time polymerase chain reaction analysis. The transcript levels of all molecules at 2 months of postnatal age were significantly increased by the lipectomy of epididymal fat. However, the lipectomy at 5 months of postnatal age resulted in decreases of expression levels of all molecules examined in the testis. Except a reduced transcript level of hydroxysteroid 17-beta dehydrogenase 3, there were no significant changes of expression levels of other steroidogenic enzymes by the lipectomy at 8 months of postnatal age. At 12 months of postnatal age, the lipectomy caused a significant increase of transcript level of steroidogenic acute regulatory protein and a significant decrease of transcript level of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1, without any expressional change of cytochrome P450 side chain cleavage, hydroxysteroid 17-beta dehydrogenase 3, and hydroxysteroid 17-beta dehydrogenase 3 in the testis. These findings suggest that the substances derived from epididymal fat could differentially influence on expression of steroidogenic enzymes in the testis during postnatal period.

Effects of nandrolone decanoate on expression of steroidogenic enzymes in the rat testis

  • Min, TaeSun;Lee, Ki-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.658-671
    • /
    • 2018
  • Objective: Nandrolone decanoate (ND) is an anabolic-androgenic steroid frequently used for clinical treatment. However, the inappropriate use of ND results in the reduction of serum testosterone level and sperm production. The suppressive effect of ND on testosterone production has not been investigated in detail. The present study was designed to examine the effect of ND on the expression of steroidogenic enzymes in the rat testis. Methods: Male Sprague Dawley rats at 50 days of age were subcutaneously administrated with either 2 or 10 mg of ND/kg body weight/week for 2 or 12 weeks. The changes of transcript and protein levels of steroidogenic enzymes in the testis were determined by real-time polymerase chain reaction and western blotting analyses, respectively. Moreover, immunohistochemical analysis was employed to determine the changes of immunostaining intensity of these enzymes. The steroidogenic enzymes investigated were steroidogenic acute regulatory protein, cytochrome P450 side chain cleavage enzyme, $17{\alpha}-hydroxylase$, $3{\beta}-hydroxysteroid$ dehydrogenase, and cytochrome P450 aromatase. Results: The treatment of ND resulted in depletion of Leydig cells and sloughing of germ cells in the testis. The ND treatment caused significant expressional decreases of steroidogenic enzymes at transcript and protein levels, and the destructive effects of ND on the testis were more apparent with a higher dose and a longer period of the treatment. Evident reduction of immunostaining intensity present in Leydig cells was clearly detected by the ND treatment. Conclusion: The exposure to ND in young male results not only in histological changes of the testis but also in aberrant gene expression of testicular steroidogenic enzymes, consequently leading into the reduction of testosterone production in the testis and thus likely disruption of spermatogenesis.

Efficient Macrocyclization for Cyclicpeptide Using Solid-Phase Reaction

  • Kim, Joong-Hup;Hong, Il-Khee;Kim, Hyo-Jeong;Jeong, Hyeh-Jean;Choi, Moon-Jeong;Yoon, Chang-No;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.801-806
    • /
    • 2002
  • Cyclicpeptides are important targets in peptide synthesis because of their interesting biological properties. Constraining highly flexible linear peptides by cyclization is one of the mostly widely used approaches to define the bioactive conformation of peptides. Cyclic peptides often have increased receptor affinity and metabolic stability over their linear counterparts. We carried out virtual screening experiment via docking in order to understand the interaction between HLE-Human Leukocyte Elastase and ligand peptide and to identify the sequence that can be a target in various ligand peptides. We made cyclic peptides as a target base on Metlle-Phe sequence having affinity for ligand and receptor active site docking. There are three ways to cyclize certain sequences of amino acids such as Met-lie-Phe-Gly-Ile. First is head-to-tail cyclization method, linking between N-terminal and C-terminal. Second method utilizes amino acid side chain such as thiol functional group in Cys, making a thioether bond. The last one includes an application of resin-substituted amino acids in solid phase reaction. Among the three methods, solid phase reaction showed the greatest yield. Macrocyclization of Fmoc-Met-Ile-Phe-Gly-Ile-OBn after cleavage of Fmoc protection in solution phase was carried out to give macrocyclic compound 5 in about 7% yield. In the contrast with solution phase reaction, solid phase reaction for macrocyclization of Met-Ile-Phe-Gly-Ile-Asp-Tentagel in normal concentrated condition gave macrocyclic compound 7 in more than 35% yield.

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells

  • Zhang, Liuping;Cui, Sheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.618-625
    • /
    • 2009
  • The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.

Immunohistochemical Study of Steroidogenesis, Proliferation, and Hypoxia-related Proteins in Caprine Corpora Lutea during the Estrous Cycle

  • Chiu, C.H.;Srinivasan, R.;Tseng, T.H.;Chuang, R.F.;Wu, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.636-642
    • /
    • 2009
  • The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a product required for the establishment and maintenance of pregnancy. In the absence of pregnancy, the production of progesterone in the CL decreases and the structure itself regresses in size. The life span and function of the CL are regulated by complex interactions between stimulatory (luteotrophic) and inhibitory (luteolytic) mediators. When an ovum is released from a mature follicle, angiogenesis and rapid growth of follicular cells form the CL. The purpose of the present study was to determine whether steroidogenesis, proliferation, and hypoxiarelated proteins are expressed in caprine CL. The expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$) were determined in caprine CL during the estrous cycle. Cytochrome P450 side chain cleavage protein did not vary significantly during the estrous cycle; however, there was an increased expression of $3{\beta}$ -hydroxysteroid dehydrogenase in the early and middle stages, which rapidly decreased in the late stage. The same observations were made with respect to steroidogenic acute regulatory protein. Variations in progesterone content and expression of PCNA, HIF-$1{\alpha}$, and VEGF were consistent with this result. Thus, the steroidogenic proteins, PCNA, HIF-$1{\alpha}$, and VEGF in caprine CL are dependent on the stage of the estrous cycle.

Effects of Postnatal Exposure to Octylphenol on the Transcriptions of Steroidogenic Enzymes in Mouse Testis

  • Kim, Suel-Kee;Lee, Ho-Joon;An, Su-Yeon;Lee, Chang Joo;Yoon, Yong-Dal
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.550-558
    • /
    • 2004
  • The effects of postnatal exposure to octylphenol(OP) on the expressions of the steroidogenic enzymes and testosterone production were evaluated. Postnatal male mice (15-day-old) were injected with 2 or 20mg $kg^{-l}$ body weight (BW) of OP for 5 days and sacrificed on postnatal day 21. Testosterone concentration was measured by radioimmunoassay and the expressions of the testicular genes were determined by RT-PCR analyses. Significant reductions in the mean body and testis weight were observed in the OP treated animals. No marked alteration in the histological structure of the testis were observed, however, slight reduction in the seminiferous tubule diameter and the number of Leydig cells and several pyknotic cells could be identified in the 20 mg $kg^{-l}$ BW of the OP treated animals. Serum testosterone concentration was dramatically reduced and the mRNA expressions of the steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc) and $17\beta$-hydroxylase/Cl7-20 lyase $(P450_{17\alpha})$ were decreased. No significant changes of the gene expressions of the steroidogenic factor-l (SF-I) and estrogen and androgen receptor after the OP treatment showed that the decreased expressions of the steroidogenic enzymes in the present study did not correlate with these genes. Altogether, the present study demonstrates that postnatal treatment of OP inhibits steroidogenesis by decreasing the transcriptional expressions of the StAR and steroidogenic enzymes. The alteration in steroidogenesis may adversely affect the normal development of the testis and sper- matogenesis.

Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharide from the Fruiting Body of Cordyceps militaris

  • Lee, Jong-Seok;Kwon, Jeong-Seok;Won, Dong-Pil;Lee, Jung-Hyun;Lee, Keun-Eok;Lee, Shin-Young;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1053-1060
    • /
    • 2010
  • Cordyceps militaris, an entomopathogenic fungus belonging to the class Ascomycetes, has been reported to have beneficial biological activities such as hypoglycemic, anti-inflammatory, antitumor, antimetastatic, hypolipidemic, immunomodulatory, and antioxidant effects. In this study, the crude water-soluble polysaccharide CMP, which was obtained from the fruiting body of C. militaris by hot water extraction and ethanol precipitation, was fractionated by DEAE-cellulose and Sepharose CL-6B column chromatographies. This process resulted in three polysaccharide fractions, termed CMP Fr I, CMP Fr II, and CMP Fr III. Of these fractions, CMP Fr II, with an average molecular mass of 127 kDa, was able to upregulate effectively the phenotypic functions of macrophages such as NO production and cytokine expression. The chemical property of the stimulatory polysaccharide, CMP Fr II, was determined based on its monosaccharide composition, which consisted of glucose (56.4%), galactose (26.4%), and mannose (17.2%). Its structural characteristics were investigated by a combination of chemical and instrumental analyses, including methylation, reductive cleavage, acetylation, Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GCMS). Results indicated that CMP Fr II consisted of the (1${\rightarrow}$4) or (1${\rightarrow}$2) linked glucopyranosyl or galactopyranosyl residue with a (1${\rightarrow}$2) or (1${\rightarrow}$6) linked mannopyranosyl, glucopyranosyl, or galactopyranosyl residue as a side chain. The configuration of the ${\beta}$-linkage and random coil conformation of CMP Fr II were confirmed using a Fungi-Fluor kit and Congo red reagent, respectively.