DOI QR코드

DOI QR Code

Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells

  • Zhang, Liuping (Medical School of Jiangsu University) ;
  • Cui, Sheng (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
  • Received : 2008.12.08
  • Accepted : 2009.02.21
  • Published : 2009.05.01

Abstract

The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a $3{\beta}$-hydroxysteroid dehydrogenase ($3{\beta}$-HSD) staining method. The purified Leydig cells were exposed to different concentrations ($10^{-7}$ M to $10^{-4}$ M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and $3{\beta}$-HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of $10^{-5}$ M and $10^{-4}$ M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that $10^{-5}$ M and $10^{-4}$ M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and $3{\beta}$-HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only $10^{-5}$ M and $10^{-4}$ M daidzein up-regulated the StAR and $3{\beta}$-HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and $3{\beta}$-HSD-1.

Keywords

References

  1. Akingbemi, B. T., R. Ge, C. S. Rosenfeld, L. G. Newton, D. O. Hardy, J. F. Catterall, D. B. Lubahn, K. S. Korach and M. P. Hardy. 2003. Estrogen receptor-alpha gene deficiency enhances androgen biosynthesis in the mouse Leydig cell. Endocrinol. 144:84-93 https://doi.org/10.1210/en.2002-220292
  2. Akingbemi, B. T., T. D. Braden, B. W. Kemppainen, K. D. Hancock, J. D. Sherrill, S. J. Cook, X. He and J. G. Supko. 2007. Exposure to phytoestrogens in the perinatal period affects androgen secretion by testicular Leydig cells in the adult rat. Endocrinol. 148:4475-4488 https://doi.org/10.1210/en.2007-0327
  3. Anderson, J. J., M. S. Anthony, J. M. Cline, S. A. Washburn and S. C. Garner. 1999. Health potential of soy isoflavones for menopausal women. Public. Health. Nutr. 2:489-504
  4. Anthony, M. S., T. B. Clarkson, C. L. Jr. Hughes, T. M. Morgan and G. L. Burke. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126:43-50
  5. Arshami, J. and K. Cheng. 2007. Effect of rc mutation on semen characteristics, spermatogenic tissues and testosterone profile in blind rhode island red cockerels. Asian-Aust. J. Anim. Sci. 20:701-705
  6. Barnes, S. and T. G. Peterson. 1995. Biochemical targets of isoflavone genistein in tumor cell lines. Proc. Soc. Exp. Biol. Med. 208:103-108
  7. Borriello, S. P., K. D. Setchell, M. Axelson and A. M. Lawson. 1985. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 58:37-43 https://doi.org/10.1111/j.1365-2672.1985.tb01427.x
  8. Chemes, H., S. Cigorraga, C. Bergadá, H. Schteingart, R. Rey and E. Pellizzari. 1992. Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol. Reprod. 46:793-801 https://doi.org/10.1095/biolreprod46.5.793
  9. Cherradi, N., M. F. Rossier, M. B. Vallotton, R. Timberg, I. Friedberg, J. Orly, X. J. Wang, D. M. Stocco and A. M. Capponi. 1997. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3$\beta$-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J. Biol. Chem. 272:7899-7907 https://doi.org/10.1074/jbc.272.12.7899
  10. Choi, J., J. Song, Y. M. Choi, D. J. Jang, E. Kim, I. Kim and K. M. Chee. 2006. Daidzein modulations of apolipoprotein B and fatty acid synthase mRNA expression in chick liver vary depending on dietary protein levels. Asian-Aust. J. Anim. Sci. 19:236-244
  11. Falkenstein, E., H. C. Tillmann, M. Christ, M. Feuring and M. Wehling. 2000. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol. Rev. 52:513-556 https://doi.org/10.1210/endo-30-3-437
  12. Habito, R. C., J. Montalto, E. Leslie and M. J. Ball. 2000. Effects of replacing meat with soyabean in the diet on sex hormone concentrations in healthy adult males. Br. J. Nutr. 84:557-563 https://doi.org/10.1371/journal.pmed.0040325
  13. Hall, J. M., J. F. Couse and K. S. Korach. 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276:36869-36872 https://doi.org/10.1074/jbc.R100029200
  14. Hilscherova, K., P. D. Jones, T. Gracia, J. L. Newsted, X. Zhang, J. T. Sanderson, R. M. Yu, R. S. Wu and J. P. Giesy. 2004. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol. Sci. 81:78-89 https://doi.org/10.1093/toxsci/kfh191
  15. Jiang, S. Q., Z. Y. Jiang, Y. C. Lin, P. B. Xi and X. Y. Ma. 2007. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil. Asian-Aust. J. Anim. Sci. 20:1252-1257
  16. Jin, L., S. Zhang, B. G. Burguera, M. E. Couce, R. Y. Osamura, E. Kulig and R. V. Lloyd. 2000. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinol. 141:333-339 https://doi.org/10.1210/en.141.1.333
  17. Kelce, W. R. 1994. Buthionine sulfoximine protects the viability of adult rat Leydig cells exposed to ethane dimethanesulfonate. Toxicol. Appl. Pharm. 125:237-246 https://doi.org/10.1006/taap.1994.1069
  18. Klinefelter, G. R., P. F. Hall and L. L. Ewing. 1987. Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multi-step procedure. Biol. Reprod. 36:769-783 https://doi.org/10.1095/biolreprod36.3.769
  19. Kwon, S. M., S. I. Kim, D. C. Chun, N. H. Cho, B. C. Chung, B. W. Park and S. J. Hong. 2001. Development of rat prostatitis model by oral administration of isoflavone and its characteristics. Yonsei. Med. J. 42:395-404
  20. Liu, H., C. Zhang, C. Ge and J. Liu. 2007. Effects of daidzein on mRNA expression of gonadotropin receptors and P450 aromatase in ovarian follicles of white silky fowls. Asian-Aust. J. Anim. Sci. 20:1827-1831
  21. Losel, R. M., E. Falkenstein, M. Feuring, A. Schultz, H. C. Tillmann, K. Rossol-Haseroth and M. Wehling. 2003. Nongenomic steroid action: controversies, questions, and answers. Physiol. Rev. 83:965-1016
  22. Lund, T. D., D. J. Munson, M. E. Haldy, K. D. Setchell, E. D. Lephart and R. J. Handa. 2004. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol. Reprod. 70:1188-1195 https://doi.org/10.1095/biolreprod.103.023713
  23. Messina, M. J., V. Persky, K. D. Setchell and S. Barnes. 1994. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer. 21:113-131 https://doi.org/10.1080/01635589409514310
  24. Mitchell, J. H., E. Cawood, D. Kinniburgh, A. Provan, A. R. Collins and D. S. Irvine. 2001. Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. 100:613-618 https://doi.org/10.1042/CS20000212
  25. Pan, L., X. Xia, Y. Feng, C. Jiang and Y. Huang. 2007. Exposure to the phytoestrogen daidzein attenuates apomorphine-induced penile erection concomitant with plasma testosterone level reduction in dose-and time-related manner in adult rats. Urology 70:613-617 https://doi.org/10.1016/j.urology.2007.05.006
  26. Pan, L., X. Xia, Y. Feng, C. Jiang, Y. Cui and Y. Huang. 2008. Exposure of juvenile rats to phytoestrogen daidzein impairs erectile function in a dose-related manner at adulthood. J. Androl. 29:55-62 https://doi.org/10.2164/jandrol.107.003392
  27. Payne, A. H. and D. B. Hales. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25:947-970 https://doi.org/10.1210/er.2003-0030
  28. Perry, D. L., J. M. Spedick, T. P. McCoy, M. R. Adams, A. A. Franke and J. M. Cline. 2007. Dietary soy protein containing isoflavonoids does not adversely affect the reproductive tract of male cynomolgus macaques (Macaca fascicularis). J. Nutr. 137:1390-1394
  29. Sanderson, J. T. 2006. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci. 94:3-21 https://doi.org/10.1093/toxsci/kfl051
  30. Setchell, K. D. R. and H. Adlercreutz. 1988. Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Role of the gut flora in toxicity and cancer (Ed. I. R. Rowland). Academic Press, London. pp. 315-345
  31. Stocco, D. M. and B. J. Clark. 1996. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17:221-244
  32. Stocco, D. M. 1998. Recent advances in the role of StAR. Rev. Reprod. 3:82-85 https://doi.org/10.1530/ror.0.0030082
  33. Tennant, J. R. 1964. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2:685-694 https://doi.org/10.1097/00007890-196411000-00001
  34. Toda, T., T. Uesugi, K. Hirai, H. Nukaya, K. Tsuji and H. Ishida. 1999. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol. Pharm. Bull. 22:1193–1201 https://doi.org/10.1248/bpb.22.1193
  35. Walsh, L. P., D. R. Webster and D. M. Stocco. 2000. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J. Endocrinol. 167:253-263 https://doi.org/10.1677/joe.0.1670253
  36. Wang, G., X. Zhang, Z. Han, Z. Liu and W. Liu. 2002. Effects of daidzein on body weight gain, serum IGF-I level and cellular immune function in intact male piglets. Asian-Aust. J. Anim. Sci. 15:1066-1070
  37. Weber, K. S., K. D. R. Setchell, D. M. Stocco and E. D. Lephart. 2001. Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5α-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague–Dawley rats. J. Endocrinol. 170:591-599 https://doi.org/10.1677/joe.0.1700591
  38. Wehling, M. 1997. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59:365-393 https://doi.org/10.1146/annurev.physiol.59.1.365
  39. Wisniewski, A. B., S. L. Klein, Y. Lakshmanan and J. P. Gearhart. 2003. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urology. 169:1582-1586 https://doi.org/10.1097/01.ju.0000046780.23389.e0
  40. Woclawek-Potocka, I., T. J. Acosta, A. Korzekwa, M. M. Bah, M. Shibaya, K. Okuda and D. J. Skarzynski. 2005. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms. Exp. Biol. Med. 230:326-333
  41. Zhao, L., Q. Chen and R. D. Brinton. 2002. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. 227:509-519 https://doi.org/10.1080/09513590500519161

Cited by

  1. Effects of Norepinephrine and Acetylcholine on the Development of Cultured Leydig Cells in Mice vol.2012, pp.1110-7251, 2012, https://doi.org/10.1155/2012/503093
  2. Potential Risk of Isoflavones: Toxicological Study of Daidzein Supplementation in Piglets vol.63, pp.16, 2015, https://doi.org/10.1021/acs.jafc.5b00677
  3. Effects of daidzein on testosterone secretion in cultured immature mouse testis vol.8, pp.2, 2009, https://doi.org/10.5372/1905-7415.0802.286
  4. Inhibition of testosterone synthesis induced by oral TiO2 NPs is associated with ROS-MAPK(ERK1/2)-StAR signaling pathway in SD rat vol.10, pp.4, 2021, https://doi.org/10.1093/toxres/tfab077