• Title/Summary/Keyword: Side Channel Attacks

Search Result 125, Processing Time 0.03 seconds

Key Recovery Algorithm for Randomly-Decayed AES Key Bits (랜덤하게 변형된 AES 키 비트열에 대한 키 복구 알고리즘)

  • Baek, Yoo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.327-334
    • /
    • 2016
  • Contrary to the common belief, DRAM which is used for the main memory of various computing devices retains its content even though it is powered-off. Especially, the data-retaining time can increase if DRAM is cooled down. The Cold Boot Attack, a kind of side-channel attacks, tries to recover the sensitive information such as the cryptographic key from the powered-off DRAM. This paper proposes a new algorithm which recovers the AES key under the symmetric-decay cold-boot-attack model. In particular, the proposed algorithm uses the strategy of reducing the size of the candidate key space by testing the randomness of the extracted AES key bit stream.

Mutual Information Analysis for Three-Phase Dynamic Current Mode Logic against Side-Channel Attack

  • Kim, Hyunmin;Han, Dong-Guk;Hong, Seokhie
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.584-594
    • /
    • 2015
  • To date, many different kinds of logic styles for hardware countermeasures have been developed; for example, SABL, TDPL, and DyCML. Current mode-based logic styles are useful as they consume less power compared to voltage mode-based logic styles such as SABL and TDPL. Although we developed TPDyCML in 2012 and presented it at the WISA 2012 conference, we have further optimized it in this paper using a binary decision diagram algorithm and confirmed its properties through a practical implementation of the AES S-box. In this paper, we will explain the outcome of HSPICE simulations, which included correlation power attacks, on AES S-boxes configured using a compact NMOS tree constructed from either SABL, CMOS, TDPL, DyCML, or TPDyCML. In addition, to compare the performance of each logic style in greater detail, we will carry out a mutual information analysis (MIA). Our results confirm that our logic style has good properties as a hardware countermeasure and 15% less information leakage than those secure logic styles used in our MIA.

Differential Fault Analysis on Block Cipher ARIA-128 (블록 암호 ARIA-128에 대한 차분 오류 공격)

  • Park, Se-Hyun;Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.15-25
    • /
    • 2011
  • A differential fault analysis(DFA) is one of the most important side channel attacks on block ciphers. Most block ciphers, such as DES, AES, ARIA, SEED and so on., have been analysed by this attack. In 2008, Wei et al. proposed the first DFA on ARIA-128. Their attack can recover the 128-bit secrey key by about 45 faulty ciphertexts. In this paper, we propose an improved DFA on ARIA-128. We can recover the 12S-bit secret key by only 4 faulty ciphertexts with the computational complexity of O($2^{32}$).

Power-based Side-Channel Analysis Against AES Implementations: Evaluation and Comparison

  • Benhadjyoussef, Noura;Karmani, Mouna;Machhout, Mohsen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.264-271
    • /
    • 2021
  • From an information security perspective, protecting sensitive data requires utilizing algorithms which resist theoretical attacks. However, treating an algorithm in a purely mathematical fashion or in other words abstracting away from its physical (hardware or software) implementation opens the door to various real-world security threats. In the modern age of electronics, cryptanalysis attempts to reveal secret information based on cryptosystem physical properties, rather than exploiting the theoretical weaknesses in the implemented cryptographic algorithm. The correlation power attack (CPA) is a Side-Channel Analysis attack used to reveal sensitive information based on the power leakages of a device. In this paper, we present a power Hacking technique to demonstrate how a power analysis can be exploited to reveal the secret information in AES crypto-core. In the proposed case study, we explain the main techniques that can break the security of the considered crypto-core by using CPA attack. Using two cryptographic devices, FPGA and 8051 microcontrollers, the experimental attack procedure shows that the AES hardware implementation has better resistance against power attack compared to the software one. On the other hand, we remark that the efficiency of CPA attack depends statistically on the implementation and the power model used for the power prediction.

A Study on the Experimental Methods of the Power Analysis Attack in a Smartcard (스마트카드의 전력분석공격 실험 방법에 관한 연구)

  • 이훈재;장익훈;최희봉;박일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.540-548
    • /
    • 2002
  • Attacks have been proposed that use side information as timing measurements, power consumption, electromagnetic emissions and faulty hardware. Elimination side-channel information or prevention it from being used to attack a secure system is an tractive ares of research. In this paper, differential power analysis techniques to attack the DES are experimented and analyzed. And we propose the prevention of DPA attack by software implementation technique.

A Study on DPA Countermeasures of the block-type ciphers (블록 형태 암호에서의 DPA 방어기술 연구)

  • 이훈재;최희봉;이상곤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2002
  • Attacks have been proposed that use side information as timing measurements, power consumption, electromagnetic emissions and faulty hardware. Elimination side-channel information of prevention it from being used to attack a secure system is an active ares of research. In this paper, differential power analysis techniques used to attack DES are compared and analyzed finally, we propose a software prevention idea of DPA attack for DES-like ciphers.

  • PDF

Dictionary attack of remote user authentication scheme using side channel analysis (부채널 분석을 이용한 원거리 사용자 인증 기법의 사전공격)

  • Kim, Yong-Hun;Youn, Taek-Young;Park, Young-Ho;Hong, Seok-Hee
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2008
  • Remote user authentication scheme is a cryptographic tool which permits a server to identify a remote user. In 2007, Wang et al. pointed out that Ku's remote user authentication scheme is vulnerable to a dictionary attack by obtaining some secret information in a smart card using side channel attacks. They also proposed a remote user authentication scheme which is secure against dictionary attack. In this paper, we analyze the protocol proposed by Wang et al. In the paper, it is claimed that the protocol is secure even though some values, which is stored in a smart card, are revealed to an adversary, However, we show that their protocol is insecure if the values are disclosed to an adversary.

Masking Exponential-Based Neural Network via Approximated Activation Function (활성화 함수 근사를 통한 지수함수 기반 신경망 마스킹 기법)

  • Joonsup Kim;GyuSang Kim;Dongjun Park;Sujin Park;HeeSeok Kim;Seokhie Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.761-773
    • /
    • 2023
  • This paper proposes a method to increase the power-analysis resistance of the neural network model's feedforward process by replacing the exponential-based activation function, used in the deep-learning field, with an approximated function especially at the multi-layer perceptron model. Due to its nature, the feedforward process of neural networks calculates secret weight and bias, which already trained, so it has risk of exposure of internal information by side-channel attacks. However, various functions are used as the activation function in neural network, so it's difficult to apply conventional side-channel countermeasure techniques, such as masking, to activation function(especially, to exponential-based activation functions). Therefore, this paper shows that even if an exponential-based activation function is replaced with approximated function of simple form, there is no fatal performance degradation of the model, and than suggests a power-analysis resistant feedforward neural network with exponential-based activation function, by masking approximated function and whole network.

Non-Profiling Power Analysis Attacks Using Continuous Wavelet Transform Method (연속 웨이블릿 변환을 사용한 비프로파일링 기반 전력 분석 공격)

  • Bae, Daehyeon;Lee, Jaewook;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1127-1136
    • /
    • 2021
  • In the field of power analysis attacks, electrical noise and misalignment of the power consumption trace are the major factors that determine the success of the attack. Therefore, several studies have been conducted to overcome this problem, and one of them is a signal processing method based on wavelet transform. Up to now, discrete wavelet transform, which can compress the trace, has been mostly used for power side-channel power analysis because continuous wavelet transform techniques increase data size and analysis time, and there is no efficient scale selection method. In this paper, we propose an efficient scale selection method optimized for power analysis attacks. Furthermore, we show that the analysis performance can be greatly improved when using the proposed method. As a result of the CPA(Correlation Power Analysis) and DDLA(Differential Deep Learning Analysis) experiments, which are non-profiling attacks, we confirmed that the proposed method is effective for noise reduction and trace alignment.

A Proposal for Enhanced Miller Algorithm Secure Against Counter Fault Attack (카운터 오류 공격에 안전한 Miller 알고리듬)

  • Bae, Kiseok;Park, Youngho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.68-75
    • /
    • 2013
  • Recently, there has been introduced various types of pairing computations to implement ID based cryptosystem for mobile ad hoc network. According to spreading the applications of pairing computations, various fault attacks have been proposed. Among them, a counter fault attack has been considered the strongest threat. Thus this paper proposes a new countermeasure to prevent the counter fault attack on Miller's algorithm. The proposed method is able to reduce the possibility of fault propagation by a random index of intermediate values. Additionally, it is difficult to challenge fault attacks on the proposed method since a simple side channel leakage of 'if' branch is eliminated.