• Title/Summary/Keyword: SiC Paper

Search Result 944, Processing Time 0.027 seconds

Fabrication of a Micro Actuator with p$^+$ Si Cantilevers for Optical Devices (p$^+$ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기의 제작)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.249-252
    • /
    • 2001
  • The paper represents the design and fabrication of an electrostatic micro actuator with $p^+$,/TEX> Si cantilevers. The micro actuator consists of a plate suspended by four $p^+$,/TEX> silicon cantilevers and an electrode on a glass substrate. The $p^+$,/TEX> Si structure is fabricated by the boron diffusion process and the anisotropic wet etch process. The cantilevers of the micro actuator curl down because of the residual stress gradient in $p^+$,/TEX> silicon. When the electrostatic forec is applied to the $p^+$,/TEX> cantilevers, the vertical displacement of the plate can be achieved. The deflection of the cantilever due to the residual stress gradient and the vertical displacement by electrostatic force were calculated. The displacement of the plate was measured with a laser displacement meter for various input voltages and frequencies. The feasibility of the proposed micro actuator for the applications to optical pickup devices or optical communication devices was confirmed by the experiments.

  • PDF

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF

Study on Characteristics of Reforming by TPOX in Perforated SiC Tube (열적부분산화법을 적용한 Perforated SiC 관의 개질특성연구)

  • Lee, Pil Hyong;Cha, Chun Loon;Hong, Seong Weon;Im, Hyun Jin;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.25-27
    • /
    • 2012
  • In this paper, combustion process in the perforated silicon carbide(SiC) tube using a two dimensional approaches with GRI Mechanism 1.2 was investigated. The computational mesh structure which is divided into $60{\times}15$ and boundary conditions are set to constant mass flow rate at the inlet and constant pressure condition at the outlet respectively. Its result shows that the temperature on this peak was roughly 100K higher than the adiabatic flame temperature of 2223K for a free laminar flame at these conditions.

  • PDF

Influence of Surfactants(Ag, Sn) in Si/Si(111) Homoepitaxial Growth (Si(111) Homoepitaxial성장에서 중간금속이 미치는 영향)

  • Gwak, Ho-Won;Lee, Ui-Wan;Park, Dong-Su;Gwak, Lee-Sang;Lee, Chung-Hwa;Kim, Hak-Bong;Lee, Un-Hwan
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.230-236
    • /
    • 1993
  • We have the homoepitaxiallayers on the surfaces of Si(111) with and without the adsorbed surfactants, for example, Ag or Sn. In this paper, We have studied the difference of growth for these two cases by the observation of intensity oscillations of RHEED specular spots during the growing processes. In the case of growth without the adsorbed surfactants, the Si atoms fill first the stacking fault layer of Si(111) 7 ${\times}$7 structure. Therefore, the irregular oscillations are observed in the early stage of growing process. However, in the case of growth with the adsorbed surfactants, the surfactants already have the ${\sqrt}{3}$ ${\times}$ ${\sqrt}{3}$ structures on the surfaces of Si(111) at the adjucate temperatures of 300`$600^{\circ}C$ and 190~$860^{\circ}C$ for the surfactants of Ag and Sn, respectively. We also find that the number of oscillations is a little larger for the case of growth with the adsorbed surfactants. The reason for this is that for the case of growth with the adsorbed surfactants, the activation energies of Si atoms decrease due to the segregation of surfactants toward the growing surfaces.

  • PDF

A 1.8 GHz SiGe HBT VCO using 0.5μm BiCMOS Process

  • Lee, Ja-Yol;Lee, Sang-Heung;Kang, Jin-Young;Shim, Kyu-Hwan;Cho, Kyoung-Ik;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • In this paper, we fabricated an 1.8 ㎓ differential VCO using a commercial 0.5 ${\mu}{\textrm}{m}$ SiGe BiCMOS process technology, The fabricated VCO consumes 16 ㎃ at 3 V supply voltage and has a 1.2 $\times$ 1.6 $mm^2$TEX>chip area. A phase noise measured at 100 KHz offset carrier is -110 ㏈c/Hz and a tuning range is 1795 MHz~1910 MHz when two varactor diodes are biased from 0 V to 3 V.

A Study on Fabrication and Properties of the GaAs/Si Solar Cell Using MOCVD (MOCVD를 이용한 GAs/Si 태양전지의 제작과 특성에 관한 연구)

  • Cha, I.S.;Lee, M.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.137-146
    • /
    • 1998
  • In this paper, the current status of manufacturing technologies for GaAs/Si solar cell were revived and provied new MOCVD. In the manufacturing process of GaAs/Si solar cells and an experiment to get the high efficiency GaAs solar cells, we must investigate the optimum growth conditions to get high quality GaAs films on Si substrates by MOCVD. The GaAs on Si substrates has been recognized as a lightweight alternative to pure substrate for space applicaton. Because its density is less the half of GaAs or Ge.So GaAs/Si has twofold weight advantage to GaAs monolithic cell. The theoretical conversion efficiecy limit of tandem GaAs/Si solar cell is 32% under AM 0 and $25^{\circ}C$ condition. It was concluded that the development of cost effective MOCVD technologies shoud be ahead GaAs solar cells for achived move high efficiency III-V solar cells involving tandem structure.

  • PDF

A study of crystallization of a-Si:H using a-Si:H/Cd interface layer (A-Si:H/Cd 계면층을 이용한 a-Si:H의 결정화 연구)

  • 김도영;최유신;임동건;김홍우;이수홍;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.529-532
    • /
    • 1997
  • We studied the crystallization of a-Si:H thin film. Multi-crystallized Si films are preferred in many applications such as FPD, solar cells, RAM, and integrated circuits. Because most of these applications require a low temperature process, we investigated a crystallization of a-Si:H using a Cd layer. A metal Cd shows an eutectic point at a temperature of 321$^{\circ}C$. This paper present Cd layer assisted crystallization of a-Si:H film for the various grain growth Parameters such as anneal temperature, Cd layer thickness, and anneal time

  • PDF

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

A Study on the Design and Characteristics of thin-film L-C Band Pass Filter

  • Kim In-Sung;Song Jae-Sung;Min Bok-Ki;Lee Won-Jae;Muller Alexandru
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.176-179
    • /
    • 2005
  • The increasing demand for high density packaging technologies and the evolution to mixed digital and analogue devices has been the con-set of increasing research in thin film multi-layer technologies such as the passive components integration technology. In this paper, Cu and TaO thin film with RF sputtering was deposited for spiral inductor and MOM capacitor on the $SiO_2$/Si(100) substrate. MOM capacitor and spiral inductor were fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, important devices for mobile communication system. Based on the high-Q values of passive components, MOM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and 5 dB for a 900 MHz filter. This paper also discusses a analysis and practical design to thin-film L-C band pass filter.

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.