• Title/Summary/Keyword: SiC Paper

Search Result 943, Processing Time 0.027 seconds

Fabrication of High-Temperature Si Hall Sensors Using Direct Bonding Technology (직접접합기술을 이용한 고온용 Si 홀 센서의 제작)

  • Chung, G.S.;Kim, Y.J.;Shin, H.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1431-1433
    • /
    • 1995
  • This paper describes the characteristics of Si Hall sensors fabricated on a SOI(Si-on-insulator} structure, in which the SOI structure was forrmed by SDB(Si-wafer direct bonding) technology. The Hall voltage and the sensitivity of implemented Si Hall devices show good linearity with respect to the applied magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall device is average $600V/A{\cdot}T$. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(Temperature Coefficient of the Offset Voltage) and TCS(Temperature Coefficient of the product Sensitivity) are less than ${\pm}6.7{\times}10^{-3}/^{\circ}C$ and ${\pm}8.2{\times}10^{-4}/^{\circ}C$, respectively. From these results, Si Hall sensors using the SOI structure presented here are very suitable for high-temperature operation.

  • PDF

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Design and implementation of a power conversion module for solid state transformers using SiC devices (배전용 반도체 변압기 구현을 위한 SiC기반 전력변환회로 단위모듈 설계에 관한 연구)

  • Lim, J.;Cho, Y.
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.63-64
    • /
    • 2016
  • This paper deal with single module design of 13.2kVrms/10kVA solid state transformers exchanging conventional transformer. We can design compact hardware system to reduce size and get higher switching frequency by using SiC devices. As a result by comparing simulation results with experiment result, it is verified.

  • PDF

Analysis of Switch Device Losses through Threshold Voltage and Miller Plateau Voltage (문턱전압과 밀러플래토 전압을 통한 스위치 소자의 손실 분석)

  • Park, Sae Hee;Seong, Ho-Jae;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.133-134
    • /
    • 2017
  • This paper analyzes switch Device losses and efficiency depending on SiC and Si devices. The switch devices loss is compared to Si and SiC-based elements through Threshold Voltage and Miller Platequ Voltage. And analyzed through comparison of each switching loss by experiment.

  • PDF

A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(I) (무전해 Ni 복합도금 과정에서 분발의 공석 기구에 대한 연구(I))

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 1989
  • Codeposion of inert particles particles in a metallic mateix by electroless plating process involves two phenomena. Firstly, the adsorption of inercles and secondly, the adsorption of inert particles on the cathode. In the present paper the first adsorption phenomenon and in the next paper the second ane are studied in greaterdetail for the Ni-SiCc, Ni-Al2AO3 and Ni-WC systems. Measurements of the Zeta potentials for the SiC and Al2AO3 particles have been in different electrolyte solutions and the ionic species adsorbed on the Particles studied. The addition of sodium acetate, trisodium citrate and sodium phosphinate to nikel sulface sruomotes the zeta potential of SiC and Al2O3 particles, but zeta phosphinate to nickel is more positive than Al2O3 particles although the amount of nickel ion adsorbrd on the Al2O3 particles become greater than that of SiC particles. It is suggested that this is due to adsortion of Na ion onto the surface SiC particles.

  • PDF

The effect of deep level defects in SiC on the electrical characteristics of Schottky barrier diode structures (깊은 준위 결함에 의한 SiC SBD 전기적 특성에 대한 영향 분석)

  • Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Cheol;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2022
  • SiC is a power semiconductor with a wide bandgap, high insulation failure strength, and thermal conductivity, but many deep-level defects. Defects that appear in SiC can be divided into two categories, defects that appear in physical properties and interface traps that appear at interfaces. In this paper, Z1/2 trap concentration 0 ~ 9×1014 cm-3 reported at room temperature (300 K) is applied to SiC substrates and epi layer to investigate turn-on characteristics. As the trap concentration increased, the current density, Shockley-read-Hall (SRH), and Auger recombination decreased, and Ron increased by about 550% from 0.004 to 0.022 mohm.

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET (GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

The study of direct ${\mu}c$-Si:H film growth using RPCVD system in low temperature (RPCVD system을 이용한 ${\mu}c$-Si:H의 저온 직접 성장 연구)

  • Ahn, Byeong-Jae;Kim, Do-Young;Lim, Dong-Gun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1818-1820
    • /
    • 1999
  • This paper presents direct ${\mu}c$-Si:H thin film growth on the glass substrates using RPCVD system (remote plasma chemical vapor deposition) in low temperature. Hydrogenated micro-crystalline silicon deposited by RPCVD system in low temperature is very useful material for photovoltaic devices, sensor applications, and TFTs (thin film transistors). Varying the deposition conditions such as substrate temperature, gas flow rate, reactive gas ratio $(SiH_4/H_2)$, total chamber pressure, and rf power, we deposited ${\mu}c$-Si:H thin films on the glass substrates (Corning glass 1737). And then we measured the structural and electrical properties of the films.

  • PDF