Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響)

  • 신용덕 (원광대학 전기전자 및 정보공학부) ;
  • 주진영 (원광대학 전기전자 및 정보공학부)
  • Published : 2006.11.01

Abstract

The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Keywords

References

  1. Da Chen, Xiao Feng Zhang and Robert O. Ritchie, 'Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide', J. Am. Ceram. Soc., 83[8], pp. 2079-2081, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01515.x
  2. Y. D. Shin and J. Y. Ju 'Properties and Manufacture of the ${\beta}-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering', Trans. KIEE. Vol. 48C[2], pp.92-97, 1999
  3. S. G. Lee and Y. W. Kim, 'Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics', J. Am. Ceram. Soc., 84[6], pp. 1347-1353, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00840.x
  4. Joe J. Cao, Warren J. Moberlychan, Lutgard C. Dejonghe, Christopher J. Gilbert and Robert O. Ritchie, 'In Situ Toughened Silicon Carbide A1-B-C Additions', J. Am. Ceram. Soc., 79[2], pp. 461-469, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08145.x
  5. Nitin P. Padture and Brian R. Lawn, 'Toughness Properties of a silicon Carbide with an in Situ Induced Heterogeneous Grain Structure', J. Am. Ceram. Soc., 77[10], pp. 2518-2522, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  6. Warren. J. MoberlyChan and Lutgard C. De Jonghe, 'Controlling Interface Chemistry and Structure to Process and Toughen Silicon Carbide', Acta Materialia., 46[7], pp. 2471-2477, 1998 https://doi.org/10.1016/S1359-6454(97)00405-9
  7. L. K. Falk, 'Microstructural Development during Liquid Phase Sintering of Silicon Carbide Ceramics', Journal of the European Ceramic Society, 17. pp. 983-994, 1997 https://doi.org/10.1016/S0955-2219(96)00198-7
  8. Diletta. Scii, Cesare. Melandri and Alida Bellosi, 'Properties of $ZrB_2$-Reinforced Tenary Composites', Adanced Engineering Materials, 6[9], pp. 775-781, 2004 https://doi.org/10.1002/adem.200400039
  9. Mylene Brach, Diletta Sciti, Andrea Balbo and Alida Bellosi, 'Short-Term Oxidation of a Ternary Composite in the System $AlN-SiC-ZrB_2$', Journal of the European Ceramic Society, 25. pp. 1771-1780, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.12.007
  10. Cathleen Mroz, 'Zirconium Diboride', J. Am. Ceram. Soc., Bull., 74[6], pp. 164-165, 1995
  11. Frederic Monteverde and Alida Bellosi, 'Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed $ZrB_2$', Advanced Engineering Materials, 5[7], pp. 508-512, 2003 https://doi.org/10.1002/adem.200300349
  12. Y. D. Shin, J. Y. Ju and Ch. Hwang, 'The Properties of ${\beta}-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$ Contents', Trans. KIEE, Vol. 49C[9], pp. 516-521, 2000
  13. Guo-Dong Zhan, Rong-Jun Xie and Mamoru Mitomo, 'Effect of ${\beta}-to-{\alpha}$ Phase Transformation on the Microstructural Development and Mechanical Properities of Fine-Grained Silicon Carbide Ceramics', J. Am. Ceram. Soc., 84[5]. pp. 945-950, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00773.x
  14. J. H. She and K. Ueno., 'Densification Behavior and Mechanical Properties of Pressureless-Sintered Silicon Carbide Ceramics with Alumina and Yttria Additions', Materials Chemistry and Physics., 59, pp. 139-142, 1999 https://doi.org/10.1016/S0254-0584(99)00039-5
  15. D. Sciti and A. Bellosi, 'Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide', J. Mat. Sci. Lett., 35, pp. 3849-3855, 2000
  16. D. Sciti, S. Guicciardi and A. Bellosi, 'Effect of Annealing Treatments on Microstructure and Mechanical Properties of Liquid-Phase-Sintered Silicon Carbide', Journal of the European Ceramic Society, 21. pp. 621-632, 2001 https://doi.org/10.1016/S0955-2219(00)00254-5
  17. M. Nader, F. Aldinger and M. J. Hoffmann, 'Influence of the ${\alpha}/{\beta}$ Phase Transformation on Microstructural Development and Mechanical Properties of Liquid Phase Sintered Silicon Carbide', J. Mat. Sci., 34. pp. 1197-1204, 1999 https://doi.org/10.1023/A:1004552704872
  18. J. Y. Kim, Y. W. Kim, Mitomo, M., Zhan, G. D. and Lee, J. G., 'Microstructure and Mechanical Properties of ${\alpha}$-Silicon Carbide Sintered with Yttrium-Aluminum Garnet and Silica', J. Am. Ceram. Soc.,, 82[2], pp. 441-444, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01783.x
  19. Adam L., Chamberlain, William G. Fahrenholtz and Gregory E. Hilmas, 'High-Strength Zirconium Diboride-Based Ceramics', J. Am. Ceram. Soc.,, 87[6], pp. 1170-1172, 2004 https://doi.org/10.1111/j.1551-2916.2004.01170.x
  20. Kristoffer Krnel, Diletta Sciti, Elena Landi and Alida Bellosi, 'Surface Modification and Oxidation Kinetics of Hot-Pressed $AiN-SiC-MoSi_2$ Electroconductive Ceramic Composite', Applied Surface Science, 210. pp. 274-285, 2003 https://doi.org/10.1016/S0169-4332(03)00155-7
  21. Ken Takahashi and Ryutarao Jimbou., 'Effect of Uniformity on the Electrical Resistivity of $SiC-ZrB_2$ Ceramic Composites', J. Am. Ceram. Soc.,, 70[12], pp. C369-C373, 1987 https://doi.org/10.1111/j.1151-2916.1987.tb04922.x
  22. F. Monteverde and A. Bellosi, 'Oxidation of $ZrB_2-Based$ Ceramics in Dry Air', Journal of The Electrochemical Society, 150(11). pp. B552-B559, 2003 https://doi.org/10.1149/1.1618226
  23. Y. H. Koh, S. Y. Lee and H. E. Kim, 'Oxidation Behavior of Titanium Boride at Elevated Temperatures', J. Am. Ceram. Soc., 84[1], pp. 239-241, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00641.x
  24. Mark M. Opeka, Inna G. Talmy, Eric J. Wuchina, James A. Zaykoski and Samuel J. Causey, 'Mechanical Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds', Journal of the European Ceramic Society, 19. pp. 2405-2414, 1999 https://doi.org/10.1016/S0955-2219(99)00129-6
  25. Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, James D. Kiser, Mrityunjay Singh and Jonathan A. Salem, 'Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use', Journal of the European Ceramic Society, 22. pp. 2757-2767, 2002 https://doi.org/10.1016/S0955-2219(02)00140-1
  26. L. J. Van der Pauw, 'A Method Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes', Philips Research Reports, 13[1], pp. 1-9, 1958
  27. Y. D. Shin 'Electric Discharge Machining of Hot-Pressed $SiC-ZrB_2$ Composites Ceramic', Trans. KIEE. Vol. 46[7], pp. 1062-1067, 1997
  28. Tor Grande, Hakson Sommerset, Eirik Hagen, Kjell wiik and Mari-Ann Einarsrud, 'Effect of Weight Loss on Liquid-Phase-Sintered Silicon Carbide', J. Am, Ceram. Soc., 80[4], pp. 1047-1052, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02945.x
  29. Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, 'Effect of Initial ${\alpha}-Phase$ Content on Microstructure and Mechanical Properties of Sintered Silicon Carbidea', J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  30. Y. W. Kim, M. Mitomo and H. Hirotsuru, 'Microstructure Development of Silicon Carbide Containing Large Seed Gains', J. Am Ceram. Soc., 80[1], pp. 99-105, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  31. Y. D. Shin and J. Y. Ju 'Phase Transformation and Mechanical Properties on Sintering Temperature of ${\beta}-SiC$ Manufacturde by Pressureless Sintering', Proceedings of the KIEE. Summer Annual Conference, pp. 1433-1435, 2001
  32. F. Monteverde, A. Bellosi and S. Guicciardi, 'Processing and Properties of Zirconium Diboride-based Composites', Journal of the European Ceramic Society, 22. pp. 279-288, 2002 https://doi.org/10.1016/S0955-2219(01)00284-9
  33. J. B. Hurst and S. Dutta, 'Simple Processing Method for High-strength Silicon Carbide', J. Am. Ceram. Soc., 70[11]. pp. C303-C308, 1987 https://doi.org/10.1111/j.1151-2916.1987.tb05642.x
  34. Y. W.. Kim, W. J. Kim and D. H. Cho, 'Effect of Additive Amount on Microstructure and Mechanical Properties of Self-reinforced Silicon Carbide', J. Mater. Sci. Lett., 16. pp. 1384-1386, 1997 https://doi.org/10.1023/A:1018544923812
  35. Kim, J. Y., Kim, Y. W., Lee, J. G., and Cho, K. S., 'Effect of Annealing on Mechanical Properties of Self-reinforced alpha-Silicon Carbide', J. Mat. Sci., 34. pp. 2325-2330, 1999 https://doi.org/10.1023/A:1004585910170
  36. V. A. Izhevskyi, L. A. Genova, A. H. A. Bressiani and J. C. Bressiani, 'Microstructure and Properties Tailoring of Liquid-Phase Sintered SiC', International Journal of Refractory Metals & Hard Materials, 19. pp. 409-417, 2001 https://doi.org/10.1016/S0263-4368(01)00015-4
  37. Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, 'Influence of Hot Pressing Sintering Temperature and Time on Microstucture and mechanical Properties of $TiB_2$ Ceramics', Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002 https://doi.org/10.1016/S0955-2219(01)00424-1
  38. J. Ihle, M. Herrmann and J. Alder, 'Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part Ⅲ: Interaction between $Al_2O_3-Y_2O_3$ and SiC', Journal of the European Ceramic Society, 25, pp. 1005-1013, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.04.017
  39. Irene M. Peterson and Tseng Ying Tien, 'Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness in Silicon Nitride', J. Am. Ceram. Soc., 78[9], pp. 2345-2352, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08667.x
  40. A. G. Evans and T. R. Wilshaw, 'Quasi-Static Solid Particle Damage in Brittle Solids-1. Observation Analysis and Implications', Acta Metallurgica. Vol. 24, pp. 939-956, 1976 https://doi.org/10.1016/0001-6160(76)90042-0
  41. Guo-Jun Zhang, Zhen-Yan Deng, Naoki Kondo, Jian-Feng Yang and Tatsuki Ohji, 'Reactive Hot Pressing of $ZrB_2-SiC$ Composites', J. Am. Ceram. Soc., 83[9], pp. 2330-2332, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  42. Neil N. Ault and John T. Crowe, 'Silicon Carbide', J. Am. Ceram. Soc., Bull., 74[6], pp. 150-151, 1995
  43. G. Rixecker, I. Wiedmann, A. Rosinue and F. Aldinger, 'High-Temperature effects in the Fracture Mechanical Behaviour of Silicon Carbide Liquid-Phase-Sintered with $AlN-Y_2O_3$ Additives', Journal of the European Ceramic Society, 21. pp. 1013-1019, 2001 https://doi.org/10.1016/S0955-2219(00)00317-4
  44. Lee, J. K., Tanaka, H. and Kim, H., 'Movement of Liquid Phase and the Formation of Surface Reaction Layer on the Sintering of ${\beta}-SiC$ with an Additive of Yttrium Aluminium Garnet', J. Mat, Sci., 15. pp. 409-411, 1996 https://doi.org/10.1007/BF00277181
  45. Y. D. Shin, J. Y. Ju, J. S. Kwon, 'Electrical Conductive Mechanism of Hot-pressed ${\alpha}-SiC-ZrB_2$ Composites', Trans. KIEE. Vol. 48C[2], pp. 104-108, 1998
  46. C. Monticelli, F. Zucchi, A. Pagnoni and M. Dal Colle, 'Corrosion of a Zirconium/Silicon Carbide Composite in Aqueous Solutions', Electrochimica Acta, 50, pp. 3461-3469, 2005 https://doi.org/10.1016/j.electacta.2004.12.023
  47. Akira Kondo, 'Electrical Conduction Mechanism in Recrystallized SiC', Journal of the Ceramic Society of Japan. Int. Edition, Vol. 100, pp. 1204-1208, 1993
  48. Hui Gu, Takayuki Nagano, Guo-Dong Zhan, Mamoru Mitomo and Fumihiro Wakai, 'Dynamic Evolution of Grain Boundary Films in Liquid-Phase-Sintered Ultrafine Silicon Carbide Material', J. Am. Ceram. Soc., 86[10], pp. 1753-1760, 2003 https://doi.org/10.1111/j.1151-2916.2003.tb03550.x