• Title/Summary/Keyword: Si doping cell

Search Result 69, Processing Time 0.031 seconds

The fabrication of Solar Cell and Doping Property using SOD Method On the Multi-crystalline Si wafer (다결정 Si 웨이퍼 기판위에 SOD방법을 이용한 도핑특성과 태양전지 제작)

  • Kim, Hee-Jae;Kim, Young-Kuk;Hwang, Sun-Woo;Kim, Dong-Hee;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.317-319
    • /
    • 2004
  • 이 논문에서는 태양전지 공정 중에서 중요시되는 에미터 형성에 대한 방법 중 하나인 SOD기술을 도입하였다. SOD(Spin-On Doping)은 저가형 고효율 태양전지를 개발하기 위하여 연구되고 있는 방법 중의 하나이다. 태양전지 제작을 위해 사용한 기판은 P형 다결정 Si 페이퍼를 사용하였고, SOD 기술을 적용하여 온도와 시간에 따른 도핑특성의 변화를 실험적으로 연구하였다.

  • PDF

A study on efficiency improvement of poly-Si solar cell using a selective etching along the grain boundaries (결정입계 선택적 식각 기법을 적용한 다결정 규소 태양전지의 효율 향상에 관한 연구)

  • 임동건;이수은;박성현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.597-600
    • /
    • 1999
  • A solar cell conversion efficiency was degraded by grain boundary effect in polycrystalline silicon To reduce grain boundary effect, we performed a preferential grain boundary etching, POC$_3$ n-type emitter doping, and then ITO film growth on poly- Si. Among the various preferential etchants, Schimmel etch solution exhibited the best result having grain boundary etch depth higher than 10 ${\mu}{\textrm}{m}$. RF magnetron sputter grown ITO films showed a low resistivity of 10$^{-4}$ $\Omega$ -cm and high transmittance of 85 %. With well fabricated poly-Si solar cells, we were able to achieve as high as 15 % conversion efficiency at the input power of 20 mW/$\textrm{cm}^2$.

  • PDF

Efficiency Improvement of $N^+NPP^+$ Si Solar Cell with High Low Junction Emitter Structure (고저 접합 에미터 구조를 갖는 $N^+NPP^+$ Si 태양전지의 효율 개선)

  • 장지근;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.1
    • /
    • pp.62-70
    • /
    • 1984
  • N+NPP+ HLEBSF (high low emitter back surface field) solar cells which have N+N high low junction in the emitter as well as N+PP+ BSF cells were designed and fabricated by using <111> oriented P type Si wafers with the resistivity of 10$\Omega$/$\textrm{cm}^2$ and the thickness of 13-15 mil. Physical parameters (impurity concentration, thickness) at each region of N+PP+ and N+NPP+ cell were made equally through same masks and simultaneous process except N region of HLEBSF cell to investigate the high low emitter junction effect for efficiency improvement. Under the light intensity of 100 mW/$\textrm{cm}^2$, total area (active area) conversion efficiency were typically 10.94% (12.16%) for N+PP+ BSF cells and 12.07% (13.41%) for N+N PP+ cells. Efficiency improvement of N+NPP+ cell which has high low emitter Junction structure is resulted from the suppression of emitter recombination current and the increasement of open circuit voltage (Voc) and short circuit current (Ish) by removing heavy doping effects occurring in N+ emitter region.

  • PDF

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

Study on the pn Junction Device Using the POCl3 Precursor (POCl3를 사용한 pn접합 소자에 관한 연구)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.391-396
    • /
    • 2010
  • The pn junction for solar cell was prepared on p-type Si wafer by the furnace using the $POCl_3$ and oxygen mixed precursor to research the characteristic of interface at pn junction. The sheet resistance was decreased in accordance with the increasing the diffusion process time for n-type doping on p-type Si wafer. The electron affinity at the interface in the pn junction was decreased with increasing the amount of n-type doping and the sheet resistance also decreased. Consequently, the drift current due to the generation of EHP increased because of low potential barrier. The efficiency and fill factor were increased at the solar cell with increasing the diffusion process time.

Selective Emitter Solar Cell의 표면 Doping 농도에 따른 광학적, 전기적 특성에 관한 연구

  • An, Si-Hyeon;Jang, Gyeong-Su;Park, Hyeong-Sik;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.308-308
    • /
    • 2010
  • 산업의 기반이 되는 화석연료의 고갈과 화석연료의 사용으로 야기되는 환경오염 문제로 인하여 새로운 에너지원의 개발이 요구되고 있다. 이러한 시대적 요구에 부흥하고자 신재생 에너지원에 관한 많은 연구가 진행되고 있으며, 그중에 태양전지가 가장 주목받고 있다. 그러나 태양전지는 기존 전력 생산 방법에 비해 경제성이 낮아 이를 극복하기 위한 다양한 연구가 진행되고 있다. 특히 결정질 태양전지에 관한 연구가 가장 활발한데 경제성과 변환효율을 향상시키기 위해 태양전지의 전면에 선택적 doping 형성법이 사용되고 있는데, 선택적 doping 구조의 태양전지는 기존의 태양전지보다 변환효율이 높으면서 양산에서 사용 가능한 구조이기 때문에 경제적 측면에서 더 유리한 구조라 할 수 있다. 하지만 선택적 doping 형성을 위한 실험적인 분석 방법에는 많은 시간과 노력이 필요하며 많은 시행착오를 겪어야 한다. 따라서 이러한 시간과 노력을 줄이고 실험을 하기 이전에 결과를 예측하여 실험의 방향을 제시하고자 TCAD simulation을 이용하여 결정질 태양전지의 전면에 형성한 선택적 doping 농도에 따른 pn 접합 형성 구조와 doping profile에 따른 전기적, 광학적 특성을 예측하고 효과적인 특성을 가질 수 있는 구조를 제시하고자 한다. 선택적 doping의 효과를 확인하기 위해 SR로 각 파장별 양자효율의 변화와 전기적 특성을 분석하여 selective emitter 태양전지에 적합한 pn 접합 형성구조를 제시하고자 한다.

  • PDF

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol;Lee, Hyunju;Lee, Sang-Won;Bae, Soohyun;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Ohshita, Yoshio;Ogurad, Atsushi;Kim, Donghwan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

Optimizing of Diffusion Condition in Spin on Doping for c-Si Solar Cell (스핀 도핑을 이용한 단결정 실리콘 태양전지 확산 공정 최적화)

  • Yeo, In Hwan;Park, Ju Eok;Kim, Jun Hee;Cho, Hae Sung;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2013
  • Rapid thermal processing (RTP) abruptly decreases the time required to perform solar cell processes. RTP were used to form emitter of crystalline silicon solar cells. The emitter sheet resistance is studied as a function of time and temperature. The objective of this study is reduction of doping process time with same performance. Emitter difRapid thermal dfusion was carried out by using a spin on doping and a RTP. iffusion was performed in the temperature range of $700{\sim}750^{\circ}C$ for 1m 30s~15 m. Thermal budgets yielded a $50{\Omega}/sq$ emitter using a P509 source. To reduce process time and get high efficiency, rapid thermal diffusion by IR lamp was employed in air atmosphere at $700^{\circ}C$ for 15 m.

Characterization of Amorphous Silicon $n^{+}-p-p^{+}$ Solar Cells (비정질 실리콘 $n^{+}-p-p^{+}$ 태양전지의 특성 연구)

  • Lee, Yi-Sang;Kim, Jae-Boong;Lee, Young-Keun;Chu, Hye-Yong;Jang, Jin
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.324-327
    • /
    • 1988
  • The photovoltaic performances of a-si : H$n^{+}-p-p^{+}$ solar cells have been investigated. The optimum substrate temperature for the deposition of a-Si : H $n^{+}-p-p^{+}$ cell decreases with increasing doping concentration of the p-layer, and is less than 200$^{\circ}C$ when the gas phase doping concentration is higher than 10 ppm. The results can be explained as the dependences of substrate temperature for the relaxation of silicon atoms and for the bonded hydrogen concentration in the p-layer.

  • PDF