• 제목/요약/키워드: Short-Circuit Tests

검색결과 105건 처리시간 0.02초

전기적 열선의 발화 및 화재 위험성에 관한 연구 (A Study on Ignition and Fire Risks of Electric Heat Wire)

  • 민세홍;송병준
    • 대한안전경영과학회지
    • /
    • 제17권4호
    • /
    • pp.113-121
    • /
    • 2015
  • This study aims to examine the risk of electrical fire in places where electric heat wires are used. In general, the use of electric heating wires is becoming more common and prevalent in a bid to prevent increasing damage caused by freezing and bursting in residential water pipes, factory pipes and irrigation pipes in vinyl greenhouse and a variety of heat wire products are available in market with legal safety requirements imposed on them. However, the widespread use of anti-freezing burst heat wire products has caused increasing incidents of fire, which often fail to be incorporated into statistics due to quick onsite extinguishing and insignificant damage although damage is gradually on the rise. Against this backdrop, this study aims to look into the possibility of ignition caused by electric heat wires and the mechanism of how it turns into catching fire through overheat and short circuit tests for anti-freezing burst electrical heat wires (hereinafter called the 'heat wire') and expects to serve as the basis for further observations and analyses on the cause of fire and the process of ignition in a scientific manner.

A Study on the Short Circuit Characteristic of Metallic Stabilizer Free Coated Conductor for FCL Application

  • Park, Dong-Keun;Kim, Min-Jae;Yang, Seong-Eun;Kim, Young-Jae;Chang, Ki-Sung;Na, Jin-Bae;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.37-40
    • /
    • 2007
  • As power demands increase, development of the superconducting fault current limiter (SFCL) is being watched with interest. Many types of SFCLs using various superconducting materials have been developed. Especially, the FCL using coated conductor (CC) has been investigated actively at present. CCs have many advantages for the FCL application. YBCO materials used in CCs have a high n-value, and it is relatively easy to choose a matrix of the CC for high resistivity. If the CC has high resistivity, high voltage can be applied to the CC. Then total length of the CC used in SFCL, which has effects on total price and volume of the SFCL, can be reduced. Short circuit tests of two different types of CCs in the liquid nitrogen bath and its sub-cooled condition were performed and analyzed. An effect of high resistivity of the CC and cooling methods on fault current limiting characteristics could be verified in this paper.

권선방식에 따른 무유도 권선형 HTS 코일의 퀜치 및 회복 비교특성 (Quench and Recovery Characteristics of Non-Inductively Wound HTS Coils with Various Winding)

  • 조현철;장기성;김영재;최석진;황영진;김원철;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2010
  • To limit fault current in a power system, superconducting fault current limiters (SFCLs) using high temperature superconducting (HTS) coils have been developed by many research groups so far. Non-inductive winding of HTS coils used for SFCLs can be classified into solenoid winding and pancake winding. Each of winding is expected to have different quench and recovery characteristics because the structure of solenoid winding differs from pancake winding's. Therefore it is important to the SFCLs application to investigate characteristics of each winding. In this paper, we deal with quench and recovery characteristics of four kinds of winding : solenoid winding, pancake winding without spacers, and with spacers of 2 and 4 mm thickness. In order to obtain quench and recovery parameters of coils, short circuit tests were performed in liquid nitrogen.

열팽창분사원리를 이용한 25,8kV급 가스차단기의 차단특성 (Interrupting Characteristics of 25.8kV Gas Circuit Breaker Using Thermal-Expansion Principle)

  • 장기찬;신영준;박경엽;정진교;김진기;김귀식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1603-1605
    • /
    • 1994
  • Recently, Gas Circuit Breakers are rapidly replacing Vacuum Circuit Breakers in the medium voltage switchgear. This is due to the improved performance of - GCB in interrupting capability, price, weight, size etc., while the countermeasure to suppress the switching surges of VCB has not been satisfactory. Intensive research works on the GCB have been conducted in the world widely since 1980. Nowadays it is well known that the thermal expansion type GCB can provide- better performance than puffer type in the distribution power system. KERI has conducted researches in the GCB rated at 25.8kV 25kA with Jinkwang Co. using the thermal expantion principle since 1993. In this paper, the calculated results of electric and magnetic fields for the model GCB are presented and analyzed. The effect of permanent magnet used to improve the interruption capabilty at the low current level is also investigated. The design parameters for the interrupter inspected through the short-circuit tests conducted at high power laboratory of KERI.

  • PDF

Review of Testing Configurations for Simultaneous Measurement of Friction and Triboelectrification

  • P. R. Deshmukh;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • 제40권4호
    • /
    • pp.118-132
    • /
    • 2024
  • The triboelectric nanogenerator (TENG) has emerged as a groundbreaking technology for harvesting clean and sustainable energy cost effectively. For reliable TENG design, minimizing wear damage at the friction layers is crucial. This review provides a comprehensive overview of tribometer-integrated TENG testing configurations used in the simultaneous investigation of both tribological and electrical performance. It considers configurations such as plate-on-plate, ball-on-disc, and ball-on-flat tribometers designed for linear reciprocating or rotating sliding friction tests. These tribometers are either specifically designed or adapted for TENG testing. Triboelectric material holders facilitate friction tests by establishing electrical connections from the triboelectric materials or electrodes, thereby enabling accurate measurement of electrical signals. Electrometers and oscilloscopes record electrical outputs such as short-circuit current and open-circuit voltage. This integration enables the simultaneous measurement of both friction and electrical outputs, providing a thorough understanding of TENG performance. The review also summarizes how factors such as normal force, sliding frequency, and rotating speed affect friction coefficients and TENG performance. It also examines the relationship between the coefficient of friction and tribocharges under various loads and frequencies. The review emphasizes the importance of these testing configurations for evaluating both friction and electrical performance, which are crucial for optimizing TENG efficiency. Finally, the review explores future prospects for developing innovative tribometer designs suited for both tribology and TENG testing.

A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Lee, Sang-Young;Kim, Seok-Koo;Hong, Jang-Hyuck;Shin, Byeong-Jin;Park, Jong-Hyuck;Sohn, Joon-Yong;Jang, Hyun-Min;Ahn, Soon-Ho
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.69-70
    • /
    • 2006
  • In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

  • PDF

Analysis on magnetizing characteristics of current limiting reactor using HTSC module

  • Han, Tae Hee;Lim, Sung Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.15-18
    • /
    • 2018
  • In this paper, the magnetizing characteristics of the current limiting reactor (CLR) using $high-T_C$ superconducting (HTSC) module were analyzed. Since the saturation of iron core comprising the CLR using HTSC module deteriorates its current limiting operation, the design of the CLR using HTSC module considering the magnetizing characteristics is needed. For the analysis on the magnetizing characteristics, the flux linkage and the magnetizing current of this CLR using HTSC module were derived from its electrical equivalent circuit. Through the analysis on the linkage flux versus the magnetizing current, obtained from the short-circuit tests, the suppressing effect of the iron core's saturation was discussed.

삼차권선을 이용한 이중퀜치 자속구속형 초전도한류기의 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of Double Quench Flux-Lock Type SFCL Using Its Third Winding)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.289-293
    • /
    • 2016
  • The flux-lock type superconducting fault current limiter (SFCL) connects the two parallel windings in parallel with a ferromagnetic core. We suggest that the double quench flux-lock type SFCL should add a third winding. We analyzed characteristics of the fault current and the peak current using the quench of the high-Tc superconducting element. The proposed SFCL's inductances of a primary winding and the third winding were fixed and the amplitude of inductance of the secondary winding was changed. We found that the fault current can be more effectively controlled through the analysis of the equivalent circuit and the short-circuit tests.

조합형 써지전압.전류발생기의 제작과 특성 (Fabrication and Characteristics of the Combination Surge Generator)

  • 장석훈;이복희;길경석;이영근;이복규;옥영환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1876-1878
    • /
    • 1996
  • This paper describes the combination surge generator for applying performance tests of surge protective devices. The $8/20{\mu}s$ waveform applies to low impedance circuits and components and is commonly used to determine the characteristics of surge protective devices. And the $1.2/50{\mu}s$ waveform applies to high impedance circuits and components and is used for testing dielectric behavior. Therefore, the combination surge generator, which generates $1.2/50{\mu}s$ voltage waveform under open-circuit conditions and $8/20{\mu}s$ current waveform under short-circuit condition, was proposed. Also this generator can produce $10/1000{\mu}s$ as well as $0.5{\mu}s/100kHz$ ring waveform.

  • PDF

소호 재료에 따른 기중 아크 차단 현상의 실험적 연구 (Experimental Study on Air Arcs Interruption Phenomena with Arc Quenching Materials)

  • 이상엽;연영명;박홍태;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1751-1753
    • /
    • 2002
  • Arc phenomena occur in the air, must be more diverse than vacuum and SF6. An air arc interruption method has been used in low rated voltage circuit breakers such as ACB, MCCB and MCB. Most of them have the arc chamber composed of arc chutes and lateral walls that made of many kinds of materials. Therefore, the criterion of material selection is necessary for breaking capacity improvement. So, we selected some contact and lateral wall materials, and carried out short circuit tests. Especially, some parameters of arc plasma properties were very different each polymeric wall material.

  • PDF