• Title/Summary/Keyword: Short Range Radar

Search Result 86, Processing Time 0.026 seconds

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 (2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석)

  • Kwon, Tae-Yong;Lee, Jeong-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.423-441
    • /
    • 2013
  • On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

Development of an Imaging Based Gang Protection System

  • Grimm, M.;Pelz, M.
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.149-156
    • /
    • 2008
  • During maintenance or construction works in or at the tracks of railways, high risks for passengers and railway staff, especially for the workers on the construction site exist. The high risks result out of the movement of rail vehicles, like trains or construction vehicles, which must be faced by using any available technical and operational technologies for securing them against the environment. Therefore, it is necessary to evaluate the level of protection continuously and to identify new and innovative methods and technologies for the protection of the gang (construction worker, machines and material). Especially on construction sites at line sections with two or more parallel tracks but also with single tracks, there are still a lot of incidents and accidents mostly with seriously injured persons or fatalities. These were mainly gang members that breach the railway-loading gage. By using proper warning or protection systems, the avoidance of such accidents must be achieved. The latest developments. in gang protection systems concern on the one hand fixed barriers in the middle between the construction site and the operated track and on the other hand construction vehicles equipped with automatic warning systems. The disadvantage of such protection methods is that the gang can be warned against an approaching train but a monitoring of the gang members cannot be performed. Only one part of a potential dangerous situation will be detected. If the gang members will overhear the acoustic warning signal of the security staff and the workers will not leave the danger zone in the track, the driver of the approaching train had no chance to react to the dangerous situation. An accident is often inevitable. While the detection of acoustic warning signals by the gang members working on a construction site is very difficult, the acoustical planning of an automatic warning system has to be designed for an acoustic short range level of one meter besides the construction vehicle. The decision about the use of today's technical warning system (fixed systems, automatic warning systems, etc.) must be geared to the technical feasibility and the level of safety which is needed. Criteria for decision guidance to block a track should be developed by danger estimation and economical variables. To realize the actual jurisdiction and to minimize the hazards of railway operations by the use of construction vehicles near the tracks further developments are needed. This means, that the warning systems have to be enhanced to systems for protection, which monitor the realization of the warning signal as a precondition for giving a movement authority to a train. This method can protect against accidents caused by predictable wrongdoing. The actual state of the art technique of using a collective warning combined with additional security staff is no longer acceptable. Therefore, the Institute of Transportation System of the German Aerospace Center in Braunschweig (Germany) will develop a gang warning and protection system based upon imaging methods, with optical sensors such as video in visible and invisible ranges, radar, laser, and other. The advantage of such a system based on the possibility to monitor both the gang itself and the railway-loading gauge either of the parallel track or of the same track still in use. By monitoring both situations, the system will be able to generate a warning message for the approaching train, that there are obstacles in the track, so that the train can be stopped to prevent an accident. And also the gang workers will be warned, while they breach their area.

  • PDF

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

PRC Maritime Operational Capability and the Task for the ROK Military (중국군의 해양작전능력과 한국군의 과제)

  • Kim, Min-Seok
    • Strategy21
    • /
    • s.33
    • /
    • pp.65-112
    • /
    • 2014
  • Recent trends show that the PRC has stepped aside its "army-centered approach" and placed greater emphasis on its Navy and Air Force for a wider range of operations, thereby reducing its ground force and harnessing its economic power and military technology into naval development. A quantitative growth of the PLA Navy itself is no surprise as this is not a recent phenomenon. Now is the time to pay closer attention to the level of PRC naval force's performance and the extent of its warfighting capacity in the maritime domain. It is also worth asking what China can do with its widening naval power foundation. In short, it is time to delve into several possible scenarios I which the PRC poses a real threat. With this in mind, in Section Two the paper seeks to observe the construction progress of PRC's naval power and its future prospects up to the year 2020, and categorize time frame according to its major force improvement trends. By analyzing qualitative improvements made over time, such as the scale of investment and the number of ships compared to increase in displacement (tonnage), this paper attempts to identify salient features in the construction of naval power. Chapter Three sets out performance evaluation on each type of PRC naval ships as well as capabilities of the Navy, Air Force, the Second Artillery (i.e., strategic missile forces) and satellites that could support maritime warfare. Finall, the concluding chapter estimates the PRC's maritime warfighting capability as anticipated in respective conflict scenarios, and considers its impact on the Korean Peninsula and proposes the directions ROK should steer in response. First of all, since the 1980s the PRC navy has undergone transitions as the focus of its military strategic outlook shifted from ground warfare to maritime warfare, and within 30 years of its effort to construct naval power while greatly reducing the size of its ground forces, the PRC has succeeded in building its naval power next to the U.S.'s in the world in terms of number, with acquisition of an aircraft carrier, Chinese-version of the Aegis, submarines and so on. The PRC also enjoys great potentials to qualitatively develop its forces such as indigenous aircraft carriers, next-generation strategic submarines, next-generation destroyers and so forth, which is possible because the PRC has accumulated its independent production capabilities in the process of its 30-year-long efforts. Secondly, one could argue that ROK still has its chances of coping with the PRC in naval power since, despite its continuous efforts, many estimate that the PRC naval force is roughly ten or more years behind that of superpowers such as the U.S., on areas including radar detection capability, EW capability, C4I and data-link systems, doctrines on force employment as well as tactics, and such gap cannot be easily overcome. The most probable scenarios involving the PRC in sea areas surrounding the Korean Peninsula are: first, upon the outbreak of war in the peninsula, the PRC may pursue military intervention through sea, thereby undermining efforts of the ROK-U.S. combined operations; second, ROK-PRC or PRC-Japan conflicts over maritime jurisdiction or ownership over the Senkaku/Diaoyu islands could inflict damage to ROK territorial sovereignty or economic gains. The PRC would likely attempt to resolve the conflict employing blitzkrieg tactics before U.S. forces arrive on the scene, while at the same time delaying and denying access of the incoming U.S. forces. If this proves unattainable, the PRC could take a course of action adopting "long-term attrition warfare," thus weakening its enemy's sustainability. All in all, thiss paper makes three proposals on how the ROK should respond. First, modern warfare as well as the emergent future warfare demonstrates that the center stage of battle is no longer the domestic territory, but rather further away into the sea and space. In this respect, the ROKN should take advantage of the distinct feature of battle space on the peninsula, which is surrounded by the seas, and obtain capabilities to intercept more than 50 percent of the enemy's ballistic missiles, including those of North Korea. In tandem with this capacity, employment of a large scale of UAV/F Carrier for Kill Chain operations should enhance effectiveness. This is because conditions are more favorable to defend from sea, on matters concerning accuracy rates against enemy targets, minimized threat of friendly damage, and cost effectiveness. Second, to maintain readiness for a North Korean crisis where timely deployment of US forces is not possible, the ROKN ought to obtain capabilities to hold the enemy attack at bay while deterring PRC naval intervention. It is also argued that ROKN should strengthen its power so as to protect national interests in the seas surrounding the peninsula without support from the USN, should ROK-PRC or ROK-Japan conflict arise concerning maritime jurisprudence. Third, the ROK should fortify infrastructures for independent construction of naval power and expand its R&D efforts, and for this purpose, the ROK should make the most of the advantages stemming from the ROK-U.S. alliance inducing active support from the United States. The rationale behind this argument is that while it is strategically effective to rely on alliance or jump on the bandwagon, the ultimate goal is always to acquire an independent response capability as much as possible.