• Title/Summary/Keyword: Shoot Regeneration

Search Result 445, Processing Time 0.023 seconds

Effect of Medium Component on Plant Regeneration via Adventitious Bud Formation from Leaf Explant Cultures of Strawberry (Fragaria ananassa Duch.) (딸기 (Fragaria ananassa Duch.) 잎 절편체 배양으로부터 부정아 형성을 통한 식물체 재생)

  • 조덕이;소웅영;정원일
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.171-178
    • /
    • 2001
  • This study was investigated to establish a regeneration system of plant via adventitious bud formation from leaf explant cultures of strawberry (Fragaria ananassa Duch). Effects of plant growth regulators (2,4-D, BAP), agar sucrose and myo-inositol on adventitious bud formation were investigated. When the leaf explants were cultured on MS medium supplemented with 0.1 mg/L 2,4-D and 3 mg/L BAP, the adventitious bud formation was most promoted. The adventitious bud formation was not induced from leaf explants cultured on MS medium containing 2,4-D alone. Adventitious bud formation was enhanced to almost 3 times on medium with low level of agar concentration (0.4%) in comparison with those on the medium with high level of agar (1%), but almost of shoot was vitrificated on the medium. Therefore, the normal adventitious bud formation from leaf explants was most effective on the medium containing 0.05 mg/L 2,4-D,1 mg/L BAP, 0.8% agar, 30 g/L sucrose and 100 mg/L myo-inositol. Thus, the mass propagation of healthy strawberry could be established using leaf explants.

  • PDF

Establishment of Genetic Transformation System and Introduction of MADS Box Gene in Hot Pepper (Capsicum annuum L.)

  • Lim, Hak-Tae;Zhao, Mei-Ai;Lian, Yu-Ji;Lee, Ji-Young;Eung-Jun park;Chun, Ik-Jo;Yu, Jae-Woong;Kim, Byung-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • In vitro plant regeneration of inbred breeding line of hot pepper (Capsicum annuum L.) was established using leaf and petiole segments as explants. About 28 days old plants were excised and cultured on MS medium supplemented with TDZ and NAA or in combination with Zeatin. In all of the media compositions tested, combination of TDZ 0.5 mg/L, Zeatin 0.5 mg/L, and NAA 0.1 mg/L was found to be the best medium for shoot bud initiation. Young petiole was the most appropriate explant type for the plant regeneration as well as genetic transformation in hot pepper. In this study, HpMADS1 gene isolated from hot pepper was introduced using Agrobacterium-mediated transformation system. Based on the analysis of Southern blot and RT-PCR, HpMADS1 gene was integrated in the hot pepper genome. It has been known that floral organ development is controlled by a group of regulatory factors containing the MADS domain. Morphological characteristics in these transgenic plants, especially flowering habit, however, were not significantly altered, indicating this MADS gene, HpMADS1 may be non-functional in this case.

  • PDF

A novel method for high-frequency transgenic shoot regeneration via Agrobacterium tumefaciens in flax (Linum usitatissimum L.)

  • Beyaz, Ramazan;Darcin, E. Selcen;Aycan, Murat;Kayan, Mustafa;Yildiz, Mustafa
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.240-247
    • /
    • 2016
  • In this study, routinely used transformation method, which includes transferring explants onto co-cultivation medium after inoculating them with bacterial solution for a while, was compared with 3 different inoculation methods. In every 3 methods, hypocotyl explants excised from 7-day-old sterile flax seedlings having cotyledon leaves and no root system dried under air flow in sterile cabin for 35 min were inoculated with different volumes of bacterial solution at different inoculation periods. GV2260 line of Agrobacterium tumefaciens having 'pBIN 19' plasmid containing npt II (neomycin phosphotransferase II) gene and GUS reporter gene was used in transformation studies. After inoculation, hypocotyl segments of seedlings (0.5 cm in length) - were excised and left to co-cultivation for 2 days. Then, explants were transferred to regeneration medium supplemented with different antibiotics. The presence of npt-II and GUS genes in transformants was confirmed by PCR and GUS analysis. The highest results in all characters examined in all cultivars were obtained from the 2 inoculation method in which hypocotyls excised from seedlings inoculated with $500{\mu}l$ of bacterial solution after drying in sterile cabin for 35 min were used.

Plant Regeneration via Secondary Somatic Embryogenesis and Acclimatization in Panax ginseng (장뇌삼의 2차 체세포배 발생을 통한 식물체 유도 및 순화)

  • Lee, Su-Gwang;Kim, Ji-Hee;Kang, Ho-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • This study was conducted to establish the optimal condition for plant regeneration and acclimatization from somatic embryos of Panax ginseng. Cotyledon segments of Panax ginseng produced primary and secondary somatic embryos when cultured on MS and WPM media supplemented with 7% sucrose. To induce plantlet conversion, cotyledonary somatic embryos were cultured on WPM solid medium with $GA_3$ at various concentrations (1~30 mg/L) for 4 weeks. Plantlets were transferred to 1/2 WPM solid medium with $GA_3$ at various concentrations (0~5 mg/L) and 0.5% activated charcoal for shoot and root elongations. Elongated plantlets further developed into well-developed leaf and root system on 1/3 SH medium with 0.5% activated charcoal under ventilation condition for 5 months. The highest survival rate to soil was 75% when plantlets were regenerated on 1/3 SH medium without sucrose under ventilation condition.

High-frequency shoot regeneration from leaf explants through organogenesis in bitter melon (Momordica charantia L.)

  • Thiruvengadam, Muthu;Rekha, K.T.;Yang, Chang-Hsien;Jayabalan, Narayanasamypillai;Chung, Ill-Min
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g $1^{-1}$ sucrose, 2.2 g $1^{-1}$ Gelrite, and 7.7 lM naphthalene acetic acid (NAA) with 2.2 ${\mu}M$ thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30-40 shoots per explant) was achieved on MS medium containing 5.5 ${\mu}M$ TDZ, 2.2 ${\mu}M$ NAA, and 3.3 ${\mu}M$ silver nitrate ($AgNO_3$). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 ${\mu}M$ gibberellic acid ($GA_3$). The elongated shoots were rooted in MS medium supplemented with 4.0 ${\mu}M$ indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.

Effect of plant growth regulators on plant regeneration from the Sedum rotundifolium D. Lee (둥근잎꿩의비름(Sedum rotundifolium D. Lee)의 식물체 재분화에 미치는 식물생장조절제의 영향)

  • Kwon, Hye-Kyoung;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.84-88
    • /
    • 2010
  • To establish the system of In vitro plant regeneration, the floral bud and leaf explants of Sedum rotundifolium were cultured on the MS media supplemented with different concentration of 2,4-D, NAA, and BA. The callus induction was more effective in the floral explants than the leaf explants, and was the best on MS medium containing 1.0 or 2.0 mg/L 2,4-D and 1.0 mg/L BA. The highest numbers of shoots were regenerated when callus were cultured on MS medium containing 2.0 mg/L 2,4-D and 1.0 mg/L BA for 8 weeks. The normal root formation from shoot was effective on the MS medium containing IAA alone. The regenerated plantlets were transferred to the pot and acclimatized successfully.

Identification of mitochondrial mutant (NADH-dehydrogenase) using PCR method and regeneration of mutants from Zea mays (PCR 기법을 사용한 옥수수 미토콘드리아 변이체 (NADH-dehydrogenase)의 선별과 재분화)

  • 설인환
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • The maize mitochondrial mutant (NCS2) is derived from homologous recombination between genes encoding NADH dehydrogenase subunit 4 and subunit 6. Plants from mitochondria mutants exhibited severe related growth and development including dwarfism and striping on the leaves. Aborted embryos from NCS2 mutants have been rescued and cultured on the N6 medium supplemented with 2,4-D 1 mg/l. Most calli from NCS2 aborted embryos showed slow growing pattern at first stage. However, upon continuous culturing them on the medium, those were segregated into mutant and normal callus lines. These segregations could be detected by using PCR method with three primers. Such segregation seems to be resulted from the preferential growth of normal cells over the mutant cells on the normal culture condition. Therefore, this method can be used for determining rate of indirect cytoplasmic segregation by estimating amplified band intensities. When NCS2 mutant callus lines cultured on regeneration medium, no adventitious shoot induction was observed. However, callus lines with more mitochondria induced adventitious shoots. These studies suggest that mitochondria NADH-dehydrogenase for electron transport in the inner membrane of mitochondria is essential for the differentiation and development of plants.

  • PDF

Evaluation of Exogenous Promoters for Use in Brachiaria brizantha Transformation

  • Silveira Erica Duarte;Rodrigues Julio Carlyle Macedo;Cabral Glaucia Barbosa;Leite Juliana de Almeida;Costa Sidnei Souza;Carneiro Vera Tavares de Campos
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Brachiaria (Poaceae) is the most important forage genus for cattle production in Brazil. The genetic breeding of this genus is limited by the incompatibility among species, differences in ploidy level and the natural cloning of plants by apomixis (Valle and Miles 1992). However, plant regeneration via tissue culture methods and genetic engineering provide an opportunity to introduce new characteristics in plants of this genus. We have developed methods for the 'genetic modification of Brachiaria brizantha cv. Marandu via biolistic transformation. A higher number of shoots was obtained with 4 mg/L 2.4-diclorophenoxyacetic acid and 0.2 mg/L benzylaminopurine in calli induction medium and 0.1 mg/L naphtaleneacetic acid and 4.0 mg/L kinetin in shoot regeneration medium. A selection curve for mannose was determined to use phospho mannose isomerase (PMI) gene of Escherichia coli as a selection marker. Calli formation was inhibited from 5 g/L mannose, even in the presence of sucrose while calli that were formed in the presence of mannose failed to develop embryos showing that PMI gene can be used for selection of transformants of this grass. Different promoters were tested to evaluate the efficiency based on the detection of the GUS gene expression (Jefferson et al. 1987). The monocot promoters, act1-D and ubi-1, resulted in higher expression levels than dicot promoters, ubi-3 and act-2, or the CaMV35S and CVMV promoters.

Callus Induction and Plant Regeneration from Stolon in Zoysiagrass (한국잔디류에서 포복경 배양을 통한 캘러스 유기와 재분화에 관한 연구)

  • 김종보;박순정;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.4
    • /
    • pp.311-320
    • /
    • 1997
  • This study was carried out to induce and maintain callus from 59 zoysiagrass lines, to know the effective disinfestation method for zoysiagrass stolon as explant and the difference in the response of callus induction among 59 lines, and to investigate the effect of medium, growth regulators, light, temperature, stolon part and internode position on callus induction and emhryogenic callus(E.C.) formation. The treatment of 0.lmg/L $HgCl_2$for 15 min resulted in no contamination and the highest callus induction(46.6%). Callus was induced from the 59 zoysiagrass lines. The callus growth of Z. japonica and Z. sinica was generally better than Z. matrella Ten cell lines whose callus and stolon grow fast in culture and in field, respectively were selected to he used for breeding. Callus induction was the most effective at 2.0mg /L of both 2, 4-D and picloram in MS medium. MS medium was the best for callus induction and growth while LS medium was the best for embryogenic callus and shoot formation. Callus induction and growth was better at 28, 31$^{\circ}C$. than 25$^{\circ}C$. and dark condition was better than light condition in MS me-dium containing 2mg/L 2,4-D. While callus induction was better with node part as explant than with internode part, callus growth and embryogenic callus formation was better with internode part. In 'Japonica 1', the first internode was the most effective in callus induction, but third internode was the best in '$M_2$ X $S_2$'.

  • PDF

Effects of $CO_2$ Enrichment on the Differentiation and Growth in tissue culture of Panax ginseng C. A. Meyer (人參(인삼) 조직배양(組織培養)에 있어 $CO_2$ 처리(處理)가 식물체(植物體) 분화(分化) 및 생장(生長)에 미치는 영향(影響))

  • Chung, Chan-Moon;Bae, Kil-Kwan;Aoki, Masatoshi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • This experiment was conducted to investigate the effects of length of storage period under low temperature, $CO_2$ enrichment and addition of plant growth regulators in Murashige and Skoog medium on the plant regeneration of Korean ginseng (Panax ginseng C. A. Meyer). Seeds were treated for 60 and 80 days respectively under $5^{\circ}C$ environment. 2500ppm of $CO_2$ was enriched by ventilation. Three plant growth regulators added to the medium were Indolbutyric acid, Benzyladenin and Gibberellic acid (GA3). The result indicated that : The capacity of differentiation was higher in the aged cotyledons from the seeds treated for 80 days under low temperature condition than in those treated for 60 days. $CO_2$ enrichment had stimulating effects on the growth and development of shoot primordium significantly but less effects on the formation of adventitious buds. From one zygotic embryo hundreds of plantlets were differentiated. $CO_2$ enrichment had effects on the formation of both indirect somatic embryo and direct somatic embryo. Indirect somatic embryo showed little growth and differentiation, being undifferentiated vascular stele and epicotyl. Direct somatic embryos were formed on the epidermis of backside basal part of cotyledon. Those embryos developed to whole plant having latent bud.

  • PDF