• Title/Summary/Keyword: Shielding Calculation

Search Result 135, Processing Time 0.018 seconds

Evaluation of Separation Distance from the Temporary Storage Facility for Decontamination Waste to Ensure Public Radiological Safety after Fukushima Nuclear Power Plant Accident (후쿠시마 원전 사고 이후 일반인의 방사선학적 안전성 확보를 위한 제염폐기물 임시저장시설 이격거리 평가)

  • Kim, Min Jun;Go, A Ra;Kim, Kwang Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except $5{\times}5{\times}2m\;size$) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a $50{\times}50{\times}2m\;size$ facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations (몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가)

  • Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • Medical operations and diagnosis using interventional radiology techniques have been increased. The management and monitoring of occupational radiation exposure to the staff of interventional radiology become important, specially because they stand in close proximity to the patient. The operational radiation protection quantity, Hp(10) which can be obtained from personal dosimeter do not always represent the effective dose to the staff. So, in this study, to estimate the critical organ doses to the staff of interventional radiology, Monte Carlo calculations with mathematical human phantom and dose measurements with personal dosimeters were carried out for the major interventional radiology procedures using C-arm. Results showed that the values of Hp(10) measured by personal dosimeters were higher than critical organ doses which were calculated. And the calculated dose to thyroids was much higher than those of other critical organ doses. For the proper radiation protection of the medical staff of interventional radiology, additional radiation protection for thyroids as well as for whole body shielding like wearing a lead apron should be considered.

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

Quantitative Evaluation of Radiation Dose Rates for Depleted Uranium in PRIDE Facility

  • Cho, Il Je;Sim, Jee Hyung;Kim, Yong Soo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • Background: Radiation dose rates in PRIDE facility is evaluated quantitatively for assessing radiation safety of workers because of large amounts of depleted uranium being handled in PRIDE facility. Even if direct radiation from depleted uranium is very low and will not expose a worker to significant amounts of external radiation. Materials and Methods: ORIGEN-ARP code was used for calculating the neutron and gamma source term being generated from depleted uranium (DU), and the MCNP5 code was used for calculating the neutron and gamma fluxes and dose rates. Results and Discussion: The neutron and gamma fluxes and dose rates due to DU on spherical surface of 30 cm radius were calculated with the variation of DU mass and density. In this calculation, an imaginary case in which DU density is zero was added to check the self-shielding effect of DU. In this case, the DU sphere was modeled as a point. In case of DU mixed with molten salt of 50-250 g, the neutron and gamma fluxes were calculated respectively. It was found that the molten salt contents in DU had little effect on the neutron and the gamma fluxes. The neutron and the gamma fluxes, under the respective conditions of 1 and 5 kg mass of DU, and 5 and $19.1g{\cdot}cm^{-3}$ density of DU, were calculated with the molten salt (LiCl+KCl) of 50 g fixed, and compared with the source term. As the results, similar tendency was found in neutron and gamma fluxes with the variation of DU mass and density when compared with source spectra, except their magnitudes. Conclusion: In the case of the DU mass over 5 kg, the dose rate was shown to be higher than the environmental dose rate. From these results, it is concluded that if a worker would do an experiment with DU having over 5 kg of mass, the worker should be careful in order not to be exposed to the radiation.

Calculation of Neutron and Gamma-Ray Flux-to-Dose-Rate Conversion Factors

  • Kwon, Seog-Guen;Kim, Kyung-Eung;Ha, Chung-Woo;Moon, Philip S.;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.171-179
    • /
    • 1980
  • This paper presentss flux-to-dose conversion factors for neutrons and gamma-rays based on the concept of the maximum absorbed dose. Neutron flux-to-does-rate conversion factors for energies from 2.5$\times$10$^{-8}$ to 20 MeV are presented while the conversion factors for gamma-rays are given in the energy range of 0.01 to 15MeV. Flux-to-does-rate conversion factors, which were calculated under the assumption that the radiation energy distribution has nonlinearity in phantom, are different from those values obtained by monoenergetic radiation. Especially, these values obtained here were determined for the cross section libray such as DLC-23, DLC-27, and DLC-31. The flux-to-dose-rate conversion factors obtained in this work are in a good agreement with the values presented by American National Standard Institute (ANSI) N666. These results are used to calculate the dose rate distribution of neutron and gamma-ray in any radiation fields, and will be useful for the radiation shielding analysis, radiation protection and radiation dosimetry concerned with problems of continuous energy distribution.

  • PDF

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

Shielding Analysis for Industrial Package: Focusing on Dry Active Waste (IP형 운반용기 차폐해석-잡고체폐기물을 중심으로)

  • Lee Kang-Wook;Cho Chun-Hyung;Jang Hyun-Kie;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • In this study, maximum exposure rate at DAW(Dry Active Waste) drum surface which is satisfying regulation limit was calculated for conceptual design of IP(Industrial Package). DAW can be classified as combustible and non-combustible waste and the calculation was conducted for single and mixed radionuclide for each type of waste. In case of combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 3.60E-01, 8.85E-01 and 1.27E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 3.60E-01, 8.85E-01, 1.27E+01 mSv/hr for single radionuclide(Co-60). In case of non-combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 7.14E-01, 1.83E+00, 2.69E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 7.13E-01, 1.81E-01, 2.62E+01 mSv/hr for single radionuclide(Co-60). Through this study, the maximum amount of DAW can be transported by IP was suggested as maximum exposure rate at drum surface and the calculation for the other types of waste will be conducted.

  • PDF

Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 선형가속기 구성요소 변화에 따른 후방산란에 관한 연구)

  • Kim, Hwein;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • It should be accurate dose calculation to increase the efficiency of radiation therapy, and it is priority to figure out the beam characteristics for this purpose. The target and primary collimator in head components of the linear accelerator have the greatest influence on determining the beam characteristics which is caused by backscatter and it is the factor to consider the shielding structures and equipment management. In this study, we made modeling of the linear accelerator through the Geant4 Monte Carlo simulation and investigated backscatter according to the change of the size and shape in head components. For the scattered electrons, it showed the greatest number of distributions inside of the inner radius at primary collimator. But, for the scattered photons which have the high energy, it was mostly located outside of the inner radius at primary collimator. Scattered positrons showed a small occurrence in about 0.03%. According to the change of the inner radius at primary collimator, it was great changes in the inside of inner radius for all three scattered particles. According to the change of the outer radius at primary collimator, it was shown some considerable effects from more than 60 mm outer radius. It was no significant effect according to the change of target thickness. In this study, we found that backscatter should be considered, and figured out that geometric size and shape of the peripheral components are the factors that influences the backscatter effect.