DOI QR코드

DOI QR Code

Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations

몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가

  • 임영기 (가천대학교 방사선학과)
  • Received : 2014.10.07
  • Accepted : 2014.12.10
  • Published : 2014.12.30

Abstract

Medical operations and diagnosis using interventional radiology techniques have been increased. The management and monitoring of occupational radiation exposure to the staff of interventional radiology become important, specially because they stand in close proximity to the patient. The operational radiation protection quantity, Hp(10) which can be obtained from personal dosimeter do not always represent the effective dose to the staff. So, in this study, to estimate the critical organ doses to the staff of interventional radiology, Monte Carlo calculations with mathematical human phantom and dose measurements with personal dosimeters were carried out for the major interventional radiology procedures using C-arm. Results showed that the values of Hp(10) measured by personal dosimeters were higher than critical organ doses which were calculated. And the calculated dose to thyroids was much higher than those of other critical organ doses. For the proper radiation protection of the medical staff of interventional radiology, additional radiation protection for thyroids as well as for whole body shielding like wearing a lead apron should be considered.

중재방사선을 이용한 의료적 시술이나 진단은 꾸준히 증가하고 있다. 특히 환자에 근접하여 이루어지는 중재방사선시술의 특성상 시술자에 대한 직무피폭의 관리 및 감시가 중요하다. 개인선량계를 통해 측정되는 방사선 방호 실용량인 심부선량은 중재방사선시술의 경우 균질한 방사선장에 의해 전신에 고르게 노출되는 경우가 아니므로 유효선량을 항상 대표할 수는 없다. 따라서 본 연구에서는 C-arm을 이용한 대표적인 중재방사선시술에 대해 수학적 모의피폭체와 몬테카를로 방법을 이용한 계산과 개인선량계를 이용한 실측을 통해 개인선량당량과 장기별 선량을 평가하고자 하였다. 주요 장기별 선량평가 결과는 개인선량계로 측정된 선량 값보다 낮았으나, 갑상선과 같은 장기는 전신 연조직 선량보다 상당히 높은 것으로 평가되었다. 중재방사선시술자에 대한 적절한 방사선방호를 위해 납치마의 착용과 같은 전신 방호와 더불어 갑상선 방호와 같은 추가적인 방호조치가 고려되어야 할 것이다.

Keywords

References

  1. International Commission on Radiological Protection. Avoidance of radiation injuries from medical interventional procedures. ICRP Publication 85. Oxford; Pergamon Press. 2000.
  2. Internal Commission on Radiation Units and Measurements. Radiation quantities and units. ICRU Report 33. 1980.
  3. Faulkner K, Marshall NW. The relationship of effective dose to personnel and monitor reading for simulated fluoroscopic irradiation conditions. Health Physics. 1993;64(5):502-508. https://doi.org/10.1097/00004032-199305000-00007
  4. Stern SH, Rosenstein M, Renaud L, et al. Handbook of selected tisue doses for fluoroscopic and cineangiographic examination of the coronary arteries. HHS Publication FDA 1995:95-8288.
  5. International Commission on Radiological Protection. Conversion coefficients for use in radiological protection against externational radiation. ICRP Publication 74. Oxford; Pergamon Press. 1996.
  6. Kim JI Lee BI, Lim YK, et al. Physical phantom of typical Korean male for radiation protection purpose. Radaition Protection Dosimetry. 2006;118(1):131-136. https://doi.org/10.1093/rpd/nci338
  7. Snyder WS, Ford MR, Warner GG, et al. Estimates of specific absorbed dose fraction for photon sources uniformly distributed in various organs of a heterogeneous phantom. Society of Nuclear Medicine MIRD pamphlet No. 5. revised. 1978.
  8. Cristy M. Mathematical phantoms for use in reassessment of radiation dose to Japanese atomic bomb survivors. Oak Ridge National Laboratory ORNL/TM-9487. 1985.
  9. Pelowitz DB. MCNPX user's manual version 2.6.0. Los Alomas National Laboratory LA-CP-07-1473. 2008.
  10. Cranley K, Gilmore BJ, Fogarty WA, et al. Catologue of diagnostic x-ray spectra and other data. The Institute of Physics and Engineering in Medicine Report No. 78. 1997.
  11. Padovani R, Foti C, Malisan MR. Staff dosimetry protocols in interventional radiology. Radiation Protection Dosimetry. 2001;94:193-196. https://doi.org/10.1093/oxfordjournals.rpd.a006471
  12. McEwan AC. Assessment of Occupational Exposure in New Zealand from Personal Monitoring Records. Radiation Protection in Australasia. 2000;17:60-66.

Cited by

  1. A 3D-printed patient-specific applicator guide for use in high-dose-rate interstitial brachytherapy for tongue cancer: a phantom study vol.64, pp.13, 2014, https://doi.org/10.1088/1361-6560/ab277e
  2. 인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가 vol.43, pp.3, 2014, https://doi.org/10.17946/jrst.2020.43.3.169