• Title/Summary/Keyword: Shellfish poisoning

Search Result 77, Processing Time 0.023 seconds

Stability of Domoic Acid at Different Temperature, pH and Light (온도, pH 및 빛에 대한 Domoic Acid의 안정성)

  • Mok, Jong-Soo;Lee, Tae-Seek;Oh, Eun-Gyoung;Son, Kwang-Tae;Hwang, Hye-Jin;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • To prevent the food poisoning originated by consumption of shellfish contaminated with domoic acid, the quantitative analysis of domoic acid is to be very important. The stability of domoic acid at different temperature, pH and light was investigated using high performance liquid chromatography (HPLC). The mean recoveries of domoic acid in the methanol extracts from oyster (Crassostrea gigas), blue mussel (Mytilus edulis), short neck clam (Ruditapes philippinarum) and ark shell (Scapharca broughtonii) were 85.4-104.5%, 94.8-101.2%, 91.0-104.6%, and 95.7-109.6%, respectively. The working solutions of domoic acid standard were very stable for one month at $-18^{\circ}C$, $4^{\circ}C$, and room temperature. And domoic acid in the methanol extract from oyster was stable for a day at $4^{\circ}C$ and room temperature, and for a week at $-18^{\circ}C$. Therefore, this implies that quantitative analysis for domoic acid must consider the storage conditions of the standard solutions and the methanol extracts from shellfish. The standard solutions adjusted to pH 3-9 were also stable after heating at $121^{\circ}C$ for 30 min. The effect of light exposure on domoic acid was tested by exposing the methanol extracts to light. Domoic acid degraded slowly when the samples were kept in the dark (brown vial). However, following the light exposure the photodegradation became more rapid; no detectable domoic acid remained in $1.0{\mu}g/mL$ of methanol extract after 5 hours.

Paralytic Shellfish Poisoning Toxicity of Shellfishes, Sold at Fish Markets in Seoul

  • Ham Hee-jin;Chung Yoon-tae
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2001.10a
    • /
    • pp.74-77
    • /
    • 2001
  • In order to investigate the distribution of paralytic shellfish poison, we examined the toxicity during from February to October in 2000. Of 591 shellfish samples, $17(2.88\%)$ samples were detected. Scapgarca broughtonii was highest collected $14.29\%(2/14)$. In the monthly detection rate of PSP, April was highest $13.3\%(8/60)$, in the regional collecting rate, Cheon-nam coastal area was highest $3.82\%(10/262)$, and in cases of imported area, China was $8.3\%(1/12)$. Imported area as well as domestic area samples should be strengthen to examine enduringly.

  • PDF

Bioassay on PSP in Some Shellfishes from Pusan and Kyungnam Area (부산·경남 지역의 일부 패류에 함유된 마비성 패독에 관한 연구)

  • Chun, J.H.;Lee, J.T.;Kim, S.C.;Lee, C.U.;Kim, J.Y.;Kim, B.S.;Paik, N.W.
    • The Korean Journal of Malacology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1986
  • The authors carried out paralytic shellfish poison bioassay on the 9 kinds of shellfishes collected from Pusan and Kyungnam areas of Korea from April to July, 1986. The areas are the main producing district of fisheries in Korea and the samples were collected from their producing sites-natural, cultured and marketed. There were little or no PSP in the majority of the shellfishes, but 3 natural (Pusan Il-Kwang $700{\mu}g$, Koje Okpo $648{\mu}g$, Chungmoo Madong $124{\mu}g/100gm$ meat) and 1 marketed (Pusan Chakalchi $490{\mu}g/100gm$ meat) blue mussels contained relatively high PSP only in April. It is considered that there will be a possibility of paralytic shellfish poisoning, and control program for preventing the poisoning is necessary in Korea.

  • PDF

A Study on Paralytic Shellfish Poison of Sea Mussel, Mytilus edulis -Food Poisoning Accident in Gamchun Bay, Pusan, Korea, 1986- (진주담치의 마비성독에 관한 연구 -1986년 부산 감천만 중독사고를 중심으로-)

  • CHANG Dong-Suck;SHIN Il-Shik;PYEUN Jae-Hyeung;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.293-299
    • /
    • 1987
  • At various times and places all over the world men have become ill and some have died after eating shellfish that were intoxicated with paralytic shellfish poison(PSP) caused by Protogonyaulax spp. In late March, 1986, two persons were dead by ingesting wild sea mussels, Mytilur edulis, grown at bottom of an anchored waste ship to be dismantled at Gamchun Bay, Pusan, Korea. The samples were collected from the bottom of the ship during April $1\~April$ 8 of the year to find the cause of the food poisoning accident. The toxicity was estimated by bioassay with ICR male mouse, while the toxins were extracted and characterized. The toxins were extracted with acidified $80\%$ ethanol. The extract was defatted three times with dichloromethane, treated with activated charcoal, and then purified by chromatography on Bio-Gel P-2 and Bio-Rex 70. The toxic fractions obtained were analysed by cellulose acetate membrane electrophoresis, thin layer chromatography and high performance liquid chromatogaphy. The range and the average of PSP-toxicity of the samples were $132\~295\;MU/g$, 203 MU/g respectively. The amount of PSP was $26.4\~58.9{\mu}g/g$ of whole meat in range and $40.6{\mu}g/g$ in average. The toxicity of the digestive gland of the samples was 9 times higher than that of edible meat (except digestive gland) as $439\~979MU/g$, and it was about $70\%$ in total toxin. The compositional analytical results of the paralytic shellfish toxin, Gonyautoxin $1\~4$ were the major part of the PSP and Saxitoxin and neosaxitoxin were detected as the minor component. It was concluded that the food poisoning accident was caused not by Saxitoxins but by Gonyautoxins.

  • PDF

Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management (삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향)

  • Lee, Sang Yoo;Im, Ju Hee;Woo, So Young;Choi, Hwa Young;Park, Su Been;Yoo, Cha Nee;Chun, Hyang Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • Paralytic shellfish poisoning (PSP) occurs when saxitoxin (STX), which is produced by harmful algae (dinoflagellates) and then accumulated in bivalve shellfish by filter-feeding, is consumed by humans. With recent advances in analysis technology, it has been reported that dinoflagellates also produce a variety of analogues such as the gonyautoxin (GTX) group and the N-sulfo-carbamoyl toxin (C toxin) group, in addition to STX. Accordingly, CODEX and the EFSA are stepping forward to manage STX and analogues as STX groups requiring safety management. In Korea, the occurrence of dinoflagellates producing STX analogues has already been reported, and contamination of analogues (GTX group, C toxin group) in live mussels has also been reported. In this study, in order to provide the basis for systematic monitoring and safety management of STX and analogues, their physicochemical characteristics, occurrence of dinoflagellates, toxicity and toxic equivalency factor, analytical method and occurrence were widely reviewed. This review is expected to contribute to strengthening the safety management of STX and its analogues.

Paralytic shellfish toxins (PSTs) and tetrodotoxin (TTX) of Korean pufferfish

  • Lee, Ka Jeong;Ha, Kwang Soo;Jung, Yeoun Joong;Mok, Jong Soo;Son, Kwang Tae;Lee, Hee Chung;Kim, Ji Hoe
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.360-369
    • /
    • 2021
  • Paralytic shellfish toxins (PSTs) and tetrodotoxin (TTX) are neurotoxins that display pharmacological activity that is similar to that of specific sodium channel blockers; they are the principle toxins involved in shellfish and puffer fish poisoning. In Korea, puffer fish is a very popular seafood, and several cases of accidental poisoning by TTX have been reported. Therefore, it is necessary to determine whether puffer fish poisoning incidents are caused by PSTs or by TTX. In this study, we used mouse bioassay (MBA) and liquid chromatograph-tandem mass spectrometry (LC-MS/MS) to determine the presence of PSTs and TTX in puffer fish from an area near Mireuk-do, Tong-Yeong on the southern coast of Korea from January through March, 2014. The toxicity of PSTs and TTX extracts prepared from three organs of each specimen was analyzed by MBA. Most of the extracts killed mice with typical signs of TTX and PSTs. The LC-MS/MS analysis of seven specimens of Takifugu pardalis and Takifugu niphobles, each divided into muscles, intestines, and liver, were examined for TTX. In T. pardalis, the TTX levels were within the range of 1.3-1.6 ㎍/g in the muscles, 18.8-49.8 ㎍/g in the intestines, and 23.3-96.8 ㎍/g in the liver. In T. niphobles, the TTX levels were within the range of 2.0-4.5 ㎍/g in the muscles, 23.9-71.5 ㎍/g in the intestines, and 28.1-114.8 ㎍/g in the liver. Additionally, the toxicity profile of the detected PSTs revealed that dcGTX3 was the major component in T. pardalis and T. niphobles. When PSTs were calculated as saxitoxin equivalents the levels were all less than 0.5 ㎍/g, which is below the permitted maximum standard of 0.8 ㎍/g. These findings indicate that the toxicity of T. pardalis and T. niphobles from the southern coast of Korea is due mainly to TTX and that PSTs do not exert an effect.

A study on the properities of the paralytic shellfish poison (마비성 패류 중독의 독성에 관한 연구)

  • Lee, J.T.;Shon, H.S.;Moon, D.H.;Lee, C.U.;Kim, S.C.;Pae, K.T.;Kim, J.Y.;Kim, Y.W.;Paik, N.W.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.1 s.23
    • /
    • pp.163-171
    • /
    • 1988
  • The paralytic shellfish poisoning was occurred among 25 laborers who worked at breaking-up of ships in Pusan for 5 days from March 29 to April 2 of 1956. For the purpose of accurately defining the paralytic shellfish poison(PSP) , the authors carried out mouse bioassay and chemical analysis. The results were summarized as follows: 1. The mean amount of Paralytic shellfish toxin was $1,207.8{\mu}g$ Per 100gm meat, and the mean death time of mouse was 5 minutes 16 second. 2. The properties of the PSP were mainly gonyautoxin group by chemical analysis(TLC, IR, $^{1}H-NMR$).

  • PDF

Paralytic Shellfish Toxin Profiles of the Dinoflagellate Alexandrium Species Isolated from Benthic Cysts in Jinhae Bay, Korea (진해만산 와편모조류 Alexandrium속 휴면포자 발아체의 마비성패독 조성)

  • KIM Chang-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.364-372
    • /
    • 1995
  • On the outbreak of paralytic shellfish poisoning in April 1993 in most of shellfish harvesting areas in Jinhae Bay, Korea, to clarify the toxin production of causative organism Alexandrium species, 19 axenic clonal isolates established from the benthic resting cysts in three different stations of those culture grounds were subjected to PSP toxin analysis by HPLC. Individual toxin content per cell was highly variable among the strains isolated from a sampling area and originated from an individual cyst. Average toxin contents in those areas revealed higher values of 54-70 fmol/cell. Toxin profiles included C1/C2(epiGTX8/GTX8), GTX1/GTX4 and neoSTX as the major components, and GTX2/GTX3, GTX5, C4, dcSTX and STX as the minor or sporadic ones. neoSTX on the dominant toxins showed not only most diverse compositional changes comprising $5-54 mol\%$ ranges but also no detection on the half of the strains examined, which were implicated in arising of heterogeneity with a genetic trait within a geographical region. When average toxin composition was compared, carbamate toxins comprised large proportions of $57\%,\;54\%\;and\;67\%$ as total toxin in St. 1, St. 2 and St. 4, respectively. These results suggested that an extensive paralytic shellfish toxification in Jinhae Bay could be largely due to the production of highly potent carbamate toxins in the causative dinoflagellate Alexandrium species.

  • PDF

Validation of Precolumn HPLC Oxidation Method for Analysis of Paralytic Shellfish Poison (마비성패류독소 분석을 위한 Precolumn HPLC Oxidation 법의 유효성 검증)

  • Mok, Jong-Soo;Song, Ki-Cheol;Lee, Ka-Jeong;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.147-153
    • /
    • 2013
  • To prevent paralytic shellfish poisoning (PSP) due to the consumption of shellfish contaminated with PSP toxins, the quantitative analysis of these toxins is very crucial. The AOAC International mouse bioassay (MBA) has been used widely for the routine monitoring of PSP toxins for more than 50 years. However, this method has low sensitivity and high limit of quantification (LOQ) and interferences from other components in the extract, and it cannot determine toxic profiles. Ethical problems also exist with the continued use of this live mouse assay. To establish an alternative method to the MBA used for PSP toxins analysis, we attempted to optimize the analysis conditions of a precolumn high-performance liquid chromatography (HPLC) oxidation method and succeeded in validating its accuracy and precision in quantifying PSP toxins. A clear peak and the isolation of PSP toxins were obtained by injecting the working standards of Certified Reference Materials using HPLC. The LOQ of the precolumn HPLC oxidation method for PSP toxins was about $0.1002{\mu}g/g$, which represented an approximately fourfold improvement in detection capability versus the AOAC MBA. The intra-accuracy and precision for PSP toxins in oysters were 77.0-103.3% and 2.0-5.7%, respectively, while the respective inter-accuracy and precision were 77.3-100.7% and 2.4-6.0%. The mean recoveries of PSP toxins from oysters were 75.2-112.1%. The results of a comparison study showed good correlation between the results of the precolumn HPLC oxidation method and those of MBA, with a correlation factor of 0.9291 for mussels. The precolumn HPLC oxidation method may be used as an alternative to, or supplementary method with, MBA to monitor the occurrence of PSP toxins and to analyze the profiles of these toxins in shellfish.

Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking

  • Kim, Gyungcheon;Park, Gwoncheol;Kang, Seohyun;Lee, Sanghee;Park, Jiyoung;Ha, Jina;Park, Kunbawui;Kang, Minseok;Cho, Min;Shin, Hakdong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1709-1715
    • /
    • 2021
  • Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.