DOI QR코드

DOI QR Code

Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management

삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향

  • Lee, Sang Yoo (School of Food Science and Technology, Chung-Ang University) ;
  • Im, Ju Hee (School of Food Science and Technology, Chung-Ang University) ;
  • Woo, So Young (School of Food Science and Technology, Chung-Ang University) ;
  • Choi, Hwa Young (School of Food Science and Technology, Chung-Ang University) ;
  • Park, Su Been (School of Food Science and Technology, Chung-Ang University) ;
  • Yoo, Cha Nee (School of Food Science and Technology, Chung-Ang University) ;
  • Chun, Hyang Sook (School of Food Science and Technology, Chung-Ang University)
  • 이상유 (중앙대학교 생명공학대학 식품공학과) ;
  • 임주희 (중앙대학교 생명공학대학 식품공학과) ;
  • 우소영 (중앙대학교 생명공학대학 식품공학과) ;
  • 최화영 (중앙대학교 생명공학대학 식품공학과) ;
  • 박수빈 (중앙대학교 생명공학대학 식품공학과) ;
  • 유차니 (중앙대학교 생명공학대학 식품공학과) ;
  • 전향숙 (중앙대학교 생명공학대학 식품공학과)
  • Received : 2020.09.15
  • Accepted : 2020.10.30
  • Published : 2020.12.30

Abstract

Paralytic shellfish poisoning (PSP) occurs when saxitoxin (STX), which is produced by harmful algae (dinoflagellates) and then accumulated in bivalve shellfish by filter-feeding, is consumed by humans. With recent advances in analysis technology, it has been reported that dinoflagellates also produce a variety of analogues such as the gonyautoxin (GTX) group and the N-sulfo-carbamoyl toxin (C toxin) group, in addition to STX. Accordingly, CODEX and the EFSA are stepping forward to manage STX and analogues as STX groups requiring safety management. In Korea, the occurrence of dinoflagellates producing STX analogues has already been reported, and contamination of analogues (GTX group, C toxin group) in live mussels has also been reported. In this study, in order to provide the basis for systematic monitoring and safety management of STX and analogues, their physicochemical characteristics, occurrence of dinoflagellates, toxicity and toxic equivalency factor, analytical method and occurrence were widely reviewed. This review is expected to contribute to strengthening the safety management of STX and its analogues.

마비성 패독(paralytic shellfish poisoning, PSP)에 의한 중독은 와편모조류(Dinoflagellates)가 생성하는 saxitoxin (STX)이 이매패류 등의 먹이활동에 의해 축적되고 이를 사람이 섭취함으로써 발생한다. 최근 분석기술의 발전으로 와편모조류가 STX외에도 gonyautoxin (GTX) group 및 N-sulfo carbamoyl toxins (C toxin) group 등 다양한 유사체들을 생성하는 것으로 보고되고 있다. 이에 CODEX, EFSA에서는 STX외 유사체의 안전관리를 위해 STX 및 유사체를 STX group으로 관리하고자 하는 움직임을 보이고 있다. 국내의 경우도 STX 유사체를 생성하는 조류의 발생이 이미 보고되고 있으며 실제 홍합에서 유사체의 오염사례도 소수 보고되고 있다. 따라서 국제적인 움직임에 발맞추어 국내에서도 STX 및 유사체의 group 관리를 위한 준비가 필요할 것으로 사료된다. 본 연구에서는 STX 및 유사체의 체계적인 모니터링 및 안전관리의 기반을 마련하고자 STX 및 유사체의 이화학적 특성, 생성조류, 국내외 발생현황, 독성 및 상대독성계수, 분석법, 오염현황 및 관리현황에 대한 폭넓은 검토를 수행하고자 하였다.

Keywords

Acknowledgement

본 연구는 2020년도 식품의약품안전처의 연구개발비(20163MFDS641)로 수행되었으며 이에 감사드립니다.

References

  1. European Food safety Authority, Marine biotoxins in shellfish - Saxitoxin group. EFSA J., 1019, 1-76 (2009).
  2. Loftin, K.A., Graham, J.L., Hilborn, E.D., Lehmann, S.C., Meyer, M.T., Dietze, J.E., Griffith, C.B., Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae, 56, 77-90 (2016). https://doi.org/10.1016/j.hal.2016.04.001
  3. Beak, S.H., Choi, J.M., Lee, M., Park, B.S., Zhang, Y., Arakawa, O., Takatani, T., Jeon, J-K., Kim, Y.O., Change in Paralytic Shellfish Toxins in the Mussel Mytilus galloprovincialis Depending on Dynamics of Harmful Alexandrium catenella (Group I) in the Geoje Coast (South Korea) during Bloom Season. Toxins, 12, 442 (2020). https://doi.org/10.3390/toxins12070442
  4. Ministry of Food and Drug safety, 2013. Korean Food Standard. Chapter 2. Cheongju, Korea, pp. 2-26.
  5. Schantz, E.J., Mold, J., Stanger, D., Shavel, J., Riel, F., Bowden, J., Lynch, J., Wyler, R., Riegel, B., Sommer, H., Paralytic shellfish poison VI. A procedure for the isolation and purification of the poison from toxic clams and mussel tissues. J. Am. Chem. Soc., 79, 5230-5235 (1957). https://doi.org/10.1021/ja01576a044
  6. Food and Agriculture Organization/World Health Organization, 2016. Technical paper on toxicity equivalency factors for marine biotoxin associated with bivalve molluscs, Rome, pp. 1-108.
  7. Botana, L.M., A toxicological perspective to climate change: aquatic toxins. Chem. Res. Toxicol., 29, 619-625 (2016). https://doi.org/10.1021/acs.chemrestox.6b00020
  8. Roggatz, C.C., Fletcher, N., Benoit, D.M., Algar, A.C., Doroff, A., Wright, B., Wollenberg, Valero K.C., Hardege, J.D., Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nat. Clim. Change., 9, 840-844 (2019). https://doi.org/10.1038/s41558-019-0589-3
  9. Shin, C., Jo, H., Kim S.H., Kang, G.J., Exposure assessment to paralytic shellfish toxins through the shellfish consumption in Korea. Food Res. Int., 108, 274-279 (2018). https://doi.org/10.1016/j.foodres.2018.03.061
  10. Duran-Riveroll, L.M., Cembella, A.D., Band-Schmidt, C.J., Bustillos-Guzman, J.J., Correa-Basurto, J., Docking simulation of the binding interactions of saxitoxin analogs produced by the marine dinoflagellate gymnodinium catenatum to the voltage-gated sodium channel Nav1.4. Toxins, 8, 129 (2016). https://doi.org/10.3390/toxins8050129
  11. Sullivan, J.J., Iwaoka, W.T., Liston, J., Enzymatic transformation of PSP toxins in the littleneck clam (Protothaca staminea). Biochem. Biophys. Res. Commun., 114, 465-472 (1983). https://doi.org/10.1016/0006-291X(83)90803-3
  12. Fast, M.D., Cembell, A.D., Ross, N.W., In vitro transformation of paralytic shellfish toxins in the clams Mya arenaria and Protothaca staminea. Harmful Algae, 5, 79-90 (2006). https://doi.org/10.1016/j.hal.2005.05.005
  13. Buzy, A., Thibault, P., Laycock, M.V., Development of a capillary electrophoresis Method for the Characterization of Enzymatic Products Arising from the carbamoylase digestion of paralytic shellfish poisoning toxins. J. Chromatogr. A., 688, 301-316 (1994). https://doi.org/10.1016/0021-9673(94)00850-7
  14. Garcia, C., Bravo, M.C., Lagos, M., Lagos, N., Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. Toxicon, 43, 149-158 (2004). https://doi.org/10.1016/j.toxicon.2003.11.018
  15. Raposo, M.I.C.,Teresa, M.T., Gomes, S.R., Botelho, M.J., Rudnitskaya, A., Paralytic Shellfish Toxins (PST)-Transforming Enzymes: A Review. Toxins, 12, doi: 10.3390/toxins12050344 (2020).
  16. Botelho, M.J., Marques, F., Freitas, R., Pires, A., Pereira, E., Vale, C., Paralytic shellfish toxin profiles in mussel, cockle and razor shell under post-bloom natural conditions: Evidence of higher biotransformation in razor shells and cockles. Mar. Environ. Res., doi: 10.1016/j.marenvres.2019.104839 (2020).
  17. Lee, J.S., Jeon, J.K., Han, M.S., Oshima, Y., Yasumoto, T., Paralytic shellfish toxins in the mussel Mytilus edulis and Dinoflagellate Alexandrium tamarense from Jinhae bay, Korea. Kor. Fish Soc., 25(2), 144-150 (1992).
  18. Han, M.S., Jeon, J.K., Yoon Y.H., Distribution and toxin profiles of Alexanfrium tamarense (Lebour) balech (Dinoflagellate) in the Southeastern coastal waters, Korea. Kor. J.Phycol., 8(1), 7-13 (1993).
  19. Cho, E.S., Lee, H.J., Thecal plates, toxin content and growth of five clones of Alexandrium tamarense (Dinophyceae) isolated from Jinhae Bay, Korea. Phycologia, 40(5), 435-439 (2001). https://doi.org/10.2216/i0031-8884-40-5-435.1
  20. Kim, C.J., Kim, C.H., Sako, Y., Paralytic shellfish poisoning toxin analysis of the genus Alexandrium (Dinophyceae) occurring in Korean coastal waters. Fish Sci., 71, 1-11 (2005). https://doi.org/10.1111/j.1444-2906.2005.00924.x
  21. Kim, H.Y., Shin, I.S., Comparison of Paralytic Shellfish Toxin Profiles of Alexandrium tamarense and Blue Mussel (Mytilus edulis) in Korea. Food Sci. Biotechnol., 24(2), 751-756 (2015). https://doi.org/10.1007/s10068-015-0097-9
  22. Han, M., Lee, H., Anderson D.M., Kim, B. Paralytic shellfish toxin production by the dinoflagellate Alexandrium pacificum (Chinhae Bay, Korea) in axenic, nutrient-limited chemostat cultures and nutrient-enriched batch cultures. Mar. Pollut. Bull., 104, 34-43 (2016). https://doi.org/10.1016/j.marpolbul.2016.01.057
  23. Hamasaki, K., Horie, M., Tokimitsu, S., Toda, T., Taguchi, S., Variability in toxicity of the dinoflagellate Alexandrium tamarense Isolation from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J. Plankton Res., 23, 271-278 (2001). https://doi.org/10.1093/plankt/23.3.271
  24. MacKenzie, L., Salas, M.D., Adamson, J., Beuzenberg, V., The dinoflagellate genus Alexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. Harmful Algae, 3, 71-92 (2004). https://doi.org/10.1016/j.hal.2003.09.001
  25. Touzet, N., Farrell, H., Ni Rathaille, A., Rodriguez, P., Alfonso, A., Botana, L.M., Raine, R., Dynamics of co-occurring Alexandrium minutum (Global Clade) and A. tamarense (West European) (Dinophyceae) during a summer bloom in Cork Harbour, Ireland (2006). Deep Sea Res. 2 Top. Stud. Oceanogr., 57, 268-278 (2010). https://doi.org/10.1016/j.dsr2.2009.09.015
  26. Laabir, M., Collos, Y., Masseret, E., Grzebyk, D., Abadie, E., Savar, V., Sibat, M., Amzil, Z., Influence of environmental factors on the paralytic shellfish toxin content and profile of alexandrium catenella (dinophyceae) isolated from the mediterranean sea. Mar. Drugs, 11, 1583-1601 (2013). https://doi.org/10.3390/md11051583
  27. Poulton, N.J., Keafer, B.A., Anderson, D.M., Toxin variability in natural populations of Alexandrium fundyense in Casco Bay, Maine-evidence of nitrogen limitation. Deep Sea Res. 2 Top. Stud. Oceanogr., 52, 2501-2521 (2005). https://doi.org/10.1016/j.dsr2.2005.06.029
  28. Borkman, D.G., Smayda, T.J., Schwarz, E.N., Flewelling, L.J., Tomas, C.R., Recurrent vernal presence of the toxic Alexandrium tamarense/Alexandrium fundyense (Dinoflagellata) species complex in Narragansett Bay, USA. Harmful Algae, 32, 73-80 (2014). https://doi.org/10.1016/j.hal.2013.12.005
  29. Qiu, J., Rafuse, C., Lewis, N.I., Li, A., Meng, F., Beach, D.G., McCarron, P., Screening of cyclic imine and paralytic shellfish toxins in isolates of the genus Alexandrium (Dinophyceae) from Atlantic Canada. Harmful Algae, 77, 108-118 (2018). https://doi.org/10.1016/j.hal.2018.05.005
  30. Bustillos-Guzman, J.J., Band-Schmidt, C.J., Duran-Riveroll, L.M., Hernandez-Sandoval, F.E., Lopez-Cortesa, D.J., Nunez-Vazquez, E.J., Cembella, A., Krock, B., Paralytic toxin profile of the marine dinoflagellate Gymnodinium catenatum (Graham) from the Mexican Pacific as revealed by liquid chromatography coupled with tandem mass spectrometry. Food Additives & Contaminants: Part A., doi: 10.1080/19440049.2014.1000978 (2015).
  31. Krock, B., Seguel, C.G., Cembella, A.D., Toxin profile of Alexandrium catenella from the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry. Harmful Algae, 6, 734-744 (2007). https://doi.org/10.1016/j.hal.2007.02.005
  32. Montoya, N.G., Fulco, V.K., Carignan, M.O., Carreto, J.I., Toxin variability in cultured and natural populations of Alexandrium tamarense from southern South America - Evidences of diversity and environmental regulation. Toxicon, 56, 1408-1418 (2010). https://doi.org/10.1016/j.toxicon.2010.08.006
  33. Zhang, F., Xu, X., Li, T., Liu, Z., Shellfish toxins targeting voltage-gated sodium channels. Mar. Drugs., 11, 4698-4723 (2013). https://doi.org/10.3390/md11124698
  34. Gessner, B.D., Bell, P., Doucette, G.J., Moczydlowski, E., Poli, M.A., Van Dolah, F., Hall, S., Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks. Toxicon, 35, 711-722 (1997). https://doi.org/10.1016/S0041-0101(96)00154-7
  35. Llewellyn, L.E., Dodd, M.J., Robertson, A., Ericson, G., de Koning, C., Negri, A.P., Postmortem analysis of samples from a human victim of a fatal poisoning caused by the xanthid crab, Zosimus aeneus. Toxicon, 40, 1463-1469 (2002). https://doi.org/10.1016/S0041-0101(02)00164-2
  36. Perreault, F., Matias, M.S., Melegari, S.P., Pinto, C.R.S.C., Creppy, E.E., Popovic, R., Matias, W.G., Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol. Environ. Saf.., 74, 1021-1026 (2011). https://doi.org/10.1016/j.ecoenv.2011.01.016
  37. Melegari, S.P., Pinto, C.R. S. C., Moukha, S., Creppy, E.E., Matias, W.G., Evaluation of cytotoxicity and cell death induced in vitro by saxitoxin in mammalian cells. J. Toxicol. Environ. Health, Part A., 78, 1189-1200 (2015). https://doi.org/10.1080/15287394.2015.1072069
  38. Perez, S., Vale, C., Botana, A.M., Alonso, E., Vieytes, M.R., Botana, L.M., Determination of toxicity equivalent factors for paralytic shellfish toxins by electrophysiological measurements in cultured neurons. Chem. Res. Toxicol., 24(7), 1153-1157 (2011). https://doi.org/10.1021/tx200173d
  39. O'Neill, K., Musgrave, I.F., Humpage, A., Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: A review. Environ. Toxicol. Pharmacol., 48, 7-16 (2016). https://doi.org/10.1016/j.etap.2016.09.020
  40. Wiberg, G.S., Stephenson, N.R., Toxicologic studies on paralytic shellfish poison. Toxicol Appl. Pharmacol., 2, 607-615 (1960). https://doi.org/10.1016/0041-008X(60)90078-8
  41. Munday, R., Thomas, K., Gibbs, R., Murphy, C., Quilliam, M.A., Acute toxicities of saxitoxin, neosaxitoxin, dicarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon, 76, 77-83 (2013). https://doi.org/10.1016/j.toxicon.2013.09.013
  42. Finch, S.C., Boundy, M.J., Harwood, D.T., The acute toxicity of tetrodotoxin and tetrodotoxin-saxitoxin mixtures to mice by various routes of administration. Toxins, 10, 423 (2018). https://doi.org/10.3390/toxins10110423
  43. Zepeda, R.J., Candiracci, M., Lobos, N., Lux, S., Miranda, H.F., Chronic toxicity study of neosaxitoxin in rats. Mar. Drugs., 12, 5055-5071 (2014). https://doi.org/10.3390/md12095055
  44. Selwood, A.I., Waugh, C., Harwood, D.T., Rhodes, L.L., Reeve, J., Sim, J., Munday, R., Acute toxicities of the saxitoxin congeners gonyautoxin 5, gonyautoxin 6, decarbamoyl gonyautoxin 2&3, decarbamoyl neosaxitoxin, C-1&2 and C3&4 to mice by various routes of administration. Toxins, 9, 73 (2017). https://doi.org/10.3390/toxins9020073
  45. Mons, M.N., Van Egmond, H.P., Speijers, G.J.A., Paralytic shellfish poisoning: A review. National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands. RIVM Report 388802 005 (1998).
  46. Zepeda, R.J., Candiracci, M., Lobos, N., Lux, S., Miranda, H.F., Chronic toxicity study of neosaxitoxin in rats. Mar. Drugs., 12, 5055-5071 (2014). https://doi.org/10.3390/md12095055
  47. Ramos, P.B., Diehl, F., dos Santos, J.M., Monserrat, J.M., Yunes, J.S., Oxidative stress in rats induced by consumption of saxitoxin contaminated drink water. Harmful Algae, 37, 68-74 (2014). https://doi.org/10.1016/j.hal.2014.04.002
  48. Diehl, F., Ramos, P.B., Dos Santos, J.M., Barros, D.M., Yunes, J.S., Behavioral alterations induced by repeated saxitoxin exposure in drinking water. J. Venom. Anim. Toxins Incl. Trop. Dis., 22, 18 (2016). https://doi.org/10.1186/s40409-016-0072-9
  49. Association of Official Analytical Chemists, 2000. AOAC Official Method 959.08. Paralytic shellfish poison, biological method. Final action. AOAC official methods of analysis, 17th ed., Gaithersburg, MD, USA, pp 59-61.
  50. Lawrence, J.F., Niedzwiadek, B., Menard, C., Quantitative determination of paralytic shellfish poisoning toxins in shellfish Comparison of AOAC 2005.06 LC method with other methodologies 1269 using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. J. AOAC. Internat., 88(6), 1714-1732 (2005). https://doi.org/10.1093/jaoac/88.6.1714
  51. Oshima, Y., Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J. Aoac. Int., 78, 528-532 (1995). https://doi.org/10.1093/jaoac/78.2.528
  52. EURLMB., 2020. EURLMB SOP for analysis of Paralytic shellfish toxins (PST) by precolumn HPLC-FLD according to OMA AOAC 2005.06, Version 1. Vigo, Spain, pp 1-68.
  53. Wu, Y., Ho, A.Y.T., Qian, P.Y., Leung, K.S.Y., Cai, Z., Lin, J.M., Determination of paralytic shellfish toxins in dinoflagellate Alexandrium tamarense by using isotachophoresis/capillary electrophoresis. J. Sep. Sci., 29, 399-404 (2006). https://doi.org/10.1002/jssc.200500386
  54. Dell'Aversano, C., Hess, P., Quilliam, M.A., Hydrophilic interaction liquid chromatography-mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J. Chromatogr. A., 1081(2), 190-201 (2005). https://doi.org/10.1016/j.chroma.2005.05.056
  55. Turner, A.D., McNabb, P.S., Harwood, D.T., Selwood, A.I., Boundy, M.J., Single-laboratory validation of a multitoxin ultra-performance LC-hydrophilic interaction LC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J. AOAC Int., 98, 3 (2015).
  56. Buszewski, B., Noga, S., Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal. Bioanal. Chem., 402, 231-247 (2012). https://doi.org/10.1007/s00216-011-5308-5
  57. European Commission, (2020, September 11). Commission regulation (EC) No 2074/2005. Official Journal of the European Union., Retrieved from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2074
  58. Canadian Food Inspection Agency, (2020, September 11). Canadian Shellfish Sanitation Program manual, Section B - Shellfish harvest areas. Retrieved from: https://www.inspection.gc.ca/foodsafety-for-industry/food-specific-requirements-and-guidance/fish/canadian-shellfish-sanitation-program/eng/1527251566006/1527251566942?chap=3#s4c3
  59. Codex Alimentarius, (2020, September 11). Standard for live and raw bivalve molluscs CXS292. Retrieved from: http://www.fao.org/fao-who-codexalimentarius/codex-texts/liststandards/en/
  60. Food and Drug Administration, (2020, September 11). Sec. 540.250 Compliance policy guide. Compliance program 7303.842. Retrieved from: https://www.fda.gov/media/71302/download
  61. Minister of Health Labour and Welfare, 2015. Regarding the establishment of Guidelines for risk management of shellfish poisoning in bivalves. Tokyo, Japan, pp. 1-38.
  62. Usleber, E., Schneider, E., Terplan, G., Laycock, M.V., Two formats of enzyme immunoassay for the detection of saxitoxin and other paralytic shellfish poisoning toxins. Food Addit. Contam., 12(3), 405-413 (1995). https://doi.org/10.1080/02652039509374322
  63. Jellett, J.F., Roberts, R.L., Laycock, M.V., Quilliam, M.A., Barrett, R.E., Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alert, a new rapid test, in parallel with the regulatory AOAC mouse bioassay. Toxicon, 40(10), 1407-1425 (2002). https://doi.org/10.1016/S0041-0101(02)00153-8
  64. Ministry of Food and Drug Safety, (2020, September 11). Development of analytical method and monitoring of paralytic shellfish poisoning toxins in aquatic products. Retrieved from: http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201700017608
  65. Shon, M.B., Kim, Y.S., Kim, C.H., Paralytic Shellfish Poisoning of Mediterranean mussels from Jinhae Bay in Korea. Kor. J. Fish Aquat. Sci., 42(4), 366-372 (2009). https://doi.org/10.5657/kfas.2009.42.4.366
  66. Mattarozzi, M., Milioli, M., Bianchi, F., Cavazza, A., Pigozzi, S., Milandri, A., Careri, M., Optimization of a rapid QuEChERS sample treatment method for HILIC-MS2 analysis of paralytic shellfish poisoning (PSP) toxins in mussels. Food Control, 60, 138-145 (2016). https://doi.org/10.1016/j.foodcont.2015.07.027
  67. Botelho, M.J., Marques, F., Freitas, R., Pires, A., Pereira, E., Vale, C., Paralytic shellfish toxin profiles in mussel, cockle and razor shell under post-bloom natural conditions: Evidence of higher biotransformation in razor shells and cockles. Mar. Environ. Res., 154, 104839 (2020). https://doi.org/10.1016/j.marenvres.2019.104839
  68. Robertson, A., Stirling, S., Robillot, C., Llewellyn, L., Negri, A., First report of saxitoxin in octopi. Toxicon, 44, 765-771 (2004). https://doi.org/10.1016/j.toxicon.2004.08.015
  69. Gomaa, M.N., Soliman, K.M., Embaby, M.A., Ayesh, A.M., Simultaneous occurrence of saxitoxins and biogenic amines in mackerel fish. Afr. J. Microbiol. Res., 5(29), 5178-5187 (2011).
  70. Food and Drug Administration, (2020, September 11). Fish and Fishery Products Hazards and Controls Guidance Fourth Edition - Appendix 5: FDA and EPA Safety levels in Regulations and Guidance. Retrieved from http://www.fda.gov/media/80400/download
  71. Food Standards Australia and New Zealand, (2020, September 11). Australia New Zealand Food Standards Code - Schedule 19 - Maximum levels of contaminants and natural toxicants. Retrieved from: http:// www.legislation.gov.au/Details/F2017C00333
  72. Health Canada, (2020, September 11). Health canada's maximum levels for chemical contaminants in foods. Retrieved from: https://www.canada.ca/en/health-canada/services/food-nutrition/foodsafety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html