• Title/Summary/Keyword: Shape Features

Search Result 1,392, Processing Time 0.022 seconds

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

Content-based Retrieval System using Image Shape Features (영상 형태 특징을 이용한 내용 기반 검색 시스템)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • In this paper, we present an image retrieval system using shape features. The preprocessing to gain shape feature includes edge extraction using chain code. The shape features consist of center of mass, standard deviation, ratio of major axis and minor axis length. The similarity is estimated as comparing the features of query image with the features of images in database. Thus, the candidates of images are retrieved according to the order of similarity. The result of an experimentation is dullness for scale, rotation and translation. We evaluate the performance of shape features for image retrieval on a database with over 170 images. The Recall and the Precision is each 0.72 and 0.83 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision (컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

A Development of the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 공정설계를 위한 공차 모델러 개발)

  • 김재관;노형민;이수홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.267-271
    • /
    • 2000
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material attributes. Although machining features are useful for suitable shape information for process reasoning in the CAPP, they need to be integrated with tolerance information for effective process planning. We develop the tolerance modeler that efficiently integrates machining features with tolerance information for feature-based CAPP It is based on the association of machining features, tolerance features. and tolerances Tolerance features, where tolerances are assigned, are classified into two types; one is the face that is a topological entity on a solid model and the other is the functional geometry that is not referenced to topological entities. The functional geometry is represented by using machining features All the data for representing tolerance information with machining features are stored completely and unambiguously in the independent tolerance structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

  • PDF

Study on Prediction of Compressive Strength of Concrete based on Aggregate Shape Features and Artificial Neural Network (골재의 형상 특성과 인공신경망에 기반한 콘크리트 압축강도 예측 연구)

  • Jeon, Jun-Seo;Kim, Hong-Seop;Kim, Chang-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.135-140
    • /
    • 2021
  • In this study, the concrete aggregate shape features were extracted from the cross-section of a normal concrete strength cylinder, and the compressive strength of the cylinder was predicted using artificial neural networks and image processing technology. The distance-angle features of aggregates, along with general aggregate shape features such as area, perimeter, major/minor axis lengths, etc., were numerically expressed and utilized for the compressive strength prediction. The results showed that compressive strength can be predicted using only the aggregate shape features of the cross-section without using major variables. The artificial neural network algorithm was able to predict concrete compressive strength within a range of 4.43% relative error between the predicted strength and test results. This experimental study indicates that various material properties such as rheology, and tensile strength of concrete can be predicted by utilizing aggregate shape features.

Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback

  • Mussarat, Yasmin;Muhammad, Sharif;Sajjad, Mohsin;Isma, Irum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3149-3165
    • /
    • 2013
  • Content based image retrieval is increasingly gaining popularity among image repository systems as images are a big source of digital communication and information sharing. Identification of image content is done through feature extraction which is the key operation for a successful content based image retrieval system. In this paper content based image retrieval system has been developed by adopting a strategy of combining multiple features of shape, color and relevance feedback. Shape is served as a primary operation to identify images whereas color and relevance feedback have been used as supporting features to make the system more efficient and accurate. Shape features are estimated through second derivative, least square polynomial and shapes coding methods. Color is estimated through max-min mean of neighborhood intensities. A new technique has been introduced for relevance feedback without bothering the user.

Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture (형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가)

  • Kim, Seon-Jong;Kim, Dong-Pil
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.

A Study on the Learning Shape Knowledge and Design with Inductive Generalization (귀납적 일반화를 이용한 형태지식의 습득과 디자인에 관한 연구)

  • Cha, Myung-Yeol
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.20-29
    • /
    • 2010
  • Art historians and critics have defined the style as common features appeared in a class of objects. Abstract common features from a set of objects have been used as a bench mark for date and location of original works. Commonalities in shapes are identified by relationships as well as physical properties from shape descriptions. This paper will focus on how the computer and human can recognize common shape properties from a class of shape objects to learn design knowledge. Shape representation using schema theory has been explored and possible inductive generalization from shape descriptions has been investigated. Also learned shape knowledge can be used. for new design process as design concept. Several design process such as parametric design, replacement design, analogy design etc. are used for these design processes. Works of Mario Botta and Louis Kahn are analyzed for explicitly clarifying the process from conceptual ideas to final designs. In this paper, theories of computer science, artificial intelligence, cognitive science and linguistics are employed as important bases.