• Title/Summary/Keyword: Shallow landslide

Search Result 48, Processing Time 0.025 seconds

LandScient_EWS: Real-Time Monitoring of Rainfall Thresholds for Landslide Early Warning - A Case Study in the Colombian Andes

  • Roberto J. Marin;Julian Camilo Marin-Sanchez
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.173-191
    • /
    • 2024
  • Landslides pose significant threats to many countries globally, yet the development and implementation of effective landslide early warning systems (LEWS) remain challenging due to multifaceted complexities spanning scientific, technological, and political domains. Addressing these challenges demands a holistic approach. Technologically, integrating thresholds, such as rainfall thresholds, with real-time data within accessible, open-source software stands as a promising solution for LEWS. This article introduces LandScient_EWS, a PHP-based program tailored to address this need. The software facilitates the comparison of real-time measured data, such as rainfall, with predefined landslide thresholds, enabling precise calculations and graphical representation of real-time landslide advisory levels across diverse spatial scales, including regional, basin, and hillslope levels. To illustrate its efficacy, the program was applied to a case study in Medellin, Colombia, where a rainfall event on August 26, 2008, triggered a shallow landslide. Through pre-defined rainfall intensity and duration thresholds, the software simulated advisory levels during the recorded rainfall event, utilizing data from a rain gauge positioned within a small watershed and a single grid cell (representing a hillslope) within that watershed. By identifying critical conditions that may lead to landslides in real-time scenarios, LandScient_EWS offers a new paradigm for assessing and responding to landslide hazards, thereby improving the efficiency and effectiveness of LEWS. The findings underscore the software's potential to streamline the integration of rainfall thresholds into both existing and future landslide early warning systems.

Characteristics of Landslide Occurrence and Change in the Matric Suction and Volumetric Water Content due to Rainfall Infiltration (강우침투에 의한 산사태 발생 및 모관흡수력과 체적함수비의 변화 특성에 관한 연구)

  • Seo, Won-Gyo;Choi, Junghae;Chae, Byung-Gon;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.475-487
    • /
    • 2017
  • We performed landslide flume tests to analyze characteristics of landslide occurrence and change in the ground materials due to rainfall infiltration. The test apparatus is composed of flume, rainfall simulator, and measurement sensors and landslides were triggered by heavy rainfall (Intensity=200 mm/hr) sprinkled at the above of an artificial slope. The measurement sensors for matric suction and volumetric water content were installed with 3 sets at shallow (GL-0.2 m), middle (GL-0.4 m), and deep depth (GL-0.6 m) in the slope and the tests were performed with in-situ, loose, and dense condition of each weathered soils of granite, gneiss, and mudstone. The analyses show that surface erosion was dominant in initial time of the test due to heavy rainfall and then landslides occur following locally happened transverse tension cracks. The characteristics of landslide were both shallow failure because of a spread of wetting front induced by the rainfall infiltration and retrogressive failure. While the matric suction was decreased rapidly without any precursor in the soil saturation, the volumetric water content was increased gradually, reached its maximum value, and then decreased rapidly with landslide.

Landslide Triggering Rainfall Threshold Based on Landslide Type (사면파괴 유형별 강우 한계선 설정)

  • Lee, Ji-Sung;Kim, Yun-Tae;Song, Young-Karb;Jang, Dae-Heung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.5-14
    • /
    • 2014
  • Most of slope failures have taken place between June and September in Korea, which cause a considerable damage to society. Rainfall intensity and duration are very significant triggering factors for landslide. In this paper, landslide-triggering rainfall threshold consisting of rainfall intensity-duration (I-D) was proposed. For this study, total 255 landslides were collected in landslide inventory during 1999 to 2012 from NDMI (National Disaster Management Institute), various reports, newspapers and field survey. And most of the required rainfall data were collected from KMA (Korea Meteorological Administration). The collected landslides were classified into three categories: debris flow, shallow landslide and unconfirmed. A rainfall threshold was proposed based on landslide type using statistical method such as quantile-regression method. Its validation was carried out based on 2013 landslide database. The proposed rainfall threshold was also compared with previous rainfall thresholds. The proposed landslide-triggering rainfall thresholds could be used in landslide early warning system in Korea.

Rainfall Intensity Regulating Surface Erosion and Its Contribution to Sediment Yield on the Hillslope Devastated by a Shallow Landslide (산사태 붕괴사면에 있어서 표면침식에 영향을 미치는 강우강도와 그에 따른 유출토사량의 변화)

  • Kwon, Se Myoung;Seo, Jung Il;Cho, Ho Hyoung;Kim, Suk Woo;Lee, Dong Kyun;Ji, Byoung Yun;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.314-323
    • /
    • 2013
  • To examine surface erosion and sediment export patterns on a hillslope, which was devastated by a shallow landslide and which was slowly revegetating by natural plant species, we surveyed variations in surface erosion depth on the upper-, middle- and lower-section of the hillslope, and subsequent sediment yield from the whole hillslope. The result showed that, with the passing of year, surface erosion on the devastated hillslope was regulated by higher rainfall intensity due to the supply-limitation of exportable sediment, and its variation range decreased. In addition, surface erosion on the upper-section with steep slope was regulated by higher rainfall intensity, which might result in raindrop erosion, compared to it on the lower-section with relatively gentle slope. Besides, the sediment yield from the devastated hillslope had nonlinear relationship with surface erosion depth on the hillslope because sediments on the hillslope are exported downwards while repeating their cycle of transport and redistribution. Our findings suggest the establishment of management strategy to prevent sediment-related disasters occurred during torrential rainfall events, which was based on the continuous field investigation on the hillslope devastated by landslides.

GIS Based Analysis of Landslide Factor Effect in Inje Area Using the Theory of Quantification II (수량화 2종법을 이용한 GIS 기반의 인제지역 산사태 영향인자 분석)

  • Kim, Gi-Hong;Lee, Hwan-Gil
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.57-66
    • /
    • 2012
  • Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.

Analysis of Sensors' Behavior and Its Utility for Shallow Landslide Early Warning through Model Slope Collapse Experiment (붕괴모의실험을 통한 산사태 조기경보용 계측센서의 반응성 분석 및 활용성 고찰)

  • Kang, Minjeng;Seo, Junpyo;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.208-215
    • /
    • 2019
  • The goal of this study was to analyze the reactivity of a volumetric water content sensor (soil moisture sensor) and tensiometer and to review their use in the early detection of a shallow landslide. We attempted to demonstrate shallow and rapid slope collapses using three different soil ratios under artificial rainfall at 120 mm/h. Our results showed that the measured value of the volumetric water-content sensor converged to 30~37%, and that of the tensiometer reached -3~-5 kPa immediately before the collapse of the soil under all three conditions. Based on these results, we discussed a temporal range for early warnings of landslides using measurements of the volumetric water content sensors installed at the bottom of the soil slope, but could not generalize and clarify the exact timing for these early warnings. Further experiments under various conditions are needed to determine how to use both sensors for the early detection of shallow landslides.

Landslide Risk Assessment in Inje Using Logistic Regression Model (로지스틱 회귀분석을 이용한 인제군 산사태지역의 위험도 평가)

  • Lee, Hwan-Gil;Kim, Gi-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Korea has been continuously affected by landslides, as 70% of the land is covered by mountains and most of annual rainfall concentrates between June and September. Recently, abrupt climate change affects the increase of landslide occurrence. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. In this study, a landslide risk assessment model was developed by applying logistic regression to the various data of Duksan-ri, Inje-eup, Inje-gun, Gangwon-do, which has suffered massive landslide triggered by heavy rain in July 2006. The information collected from field investigation and aerial photos right after the landslide of study area were stored in GIS DB for analysis. Slope gradient entered in two ways-as categorical variable and as linear variable. Error matrix for each case was made, and developed model showed the classification accuracy of 81.4% and 81.9%, respectively.

Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea (우리나라 자연사면 산사태지역의 강우, 지질 및 산사태 기하형상 고찰)

  • Kim, Won-Young;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.331-344
    • /
    • 2009
  • Large landslides occurred since 1990 on natural terrain, Korea were reviewed with the existing data to characterize them in terms of the condition of rainfall, geology and geometry. Ten landslide areas over the nationwide are selected for this study. Among them, five areas consist of granite basement, four areas of granite and metamorphic rocks and the remaining an area of gabbro. The basement lithology on which landslides most dominantly occurred is granite, on which 58% of landslides among the total 3,435 are taken place, the next dominant one is metamorphic rocks where 24% of landslides are occurred, and the remaining 18% are on the areas of volcanic and sedimentary rocks which are partly distributed in some areas. The landslide occurrences may depend on the rainfall intensities rather than durations. We applied the theories of Caine's threshold and Olivier's final response coefficient to the Korean cases. The rainfall conditions at the landslide areas were all satisfied enough with the landslide triggering conditions suggested by Caine and Olivier. The triggering mechanism and type of landslides may largely depend on the weathering and geomorphic characteristics of basement lithology. The granite areas are characterized by being relatively shallow but consistent weathering profiles and almost no outcrop, and therefore, shallow translational slides are dominant. Whereas metamorphic areas are characterized by consisting of steep slope, weathered outcrops on ridges and partly on flanks and irregular weathering profiles, and relatively large debris flows are dominant.

Comparison of Edge Wave Normal Modes (Edge Wave 고유파형의 비교)

  • Seo, Seung Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.285-290
    • /
    • 2013
  • Both full linear and shallow water edge waves are compared to get a better understanding of edge wave behavior. By using method of separation of variables, we are able to get solution of full linear edge wave presented by Ursell (1952) without derivation. The shallow water edge waves show dispersive features despite being derived from shallow water equations. When bottom slope is mild enough, shallow water edge wave tends to linear edge wave and has some advantages of manipulation. Solution of edge wave generated by a moving landslide of Gaussian shape is constructed by an expansion of shallow water normal modes. Numerical results are presented and discussed on their main features.