• Title/Summary/Keyword: Sewage Treatment Facilities

Search Result 162, Processing Time 0.025 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.

Introduction of the Basin Sewerage Plan in Japan through Case Studies of the Lake Biwa Sewerage System (비와호 유역하수도 사례분석을 통한 일본 유역하수도계획의 소개)

  • Han, Mideok;Park, Bae Kyung;Park, Ji Hyoung;Kim, Yong Seok;Rhew, Doug Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.533-541
    • /
    • 2015
  • We investigate the Japan's Master Plan of Comprehensive Sewerage System (JMPS) and Lake Biwa basin sewerage and suggest future development direction of the Watershed Sewerage System Maintenance Plan in Korea enforced on February 2, 2013. The JMPS is designed for compliance with the environmental standard for water quality under the Environmental Policy Act. The effluent standards applied in the master plan of Lake Biwa's Sewerage Plan for the Lake Biwa is tougher than the national standards. Therefore the Lake Biwa Baisn Sewerage System was the first in Japan to adopt facilities that perform advanced treatment for nitrogen and phosphorus removal. BOD, SS, T-N and T-P concentrations of discharge water of sewage are 0.9, 0.6, 5.5, 0.06 mg/L, respectively. Especially removal efficiency for BOD is 99.5 percent. It is necessary to study the diversification of the evaluation criteria, cost minimization approach, subsidy system improvement, economic concept of discharge load adjustment system and establishment of basin sewerage concept for the development of the basin sewerage plan in Korea.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

A Study on Efficiency of Water Purification of Korean Village Bangjuk[dike] as a Means of Ecological Watershed Management (생태적 유역관리 도구로써 마을방죽의 수질정화 효율성 고찰)

  • An, Byung-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.90-100
    • /
    • 2012
  • This study centering on 10 village - Bangjuks analyzed multifunctionality value of village Bangjuks which have been main water treatment system in Korean traditional villages. On the basis of understanding the structure and character of components such as the well, common spring, village waterway and others which making water-flow and consisting of aquatic system in Korean traditional village Bangjuk, the conclusion as the instrumental device of social and ecological role and ecological watershed management, securing the ecosystem soundness of the damaged or deteriated aquatic ecosystem due to the industrialization and urbanization is as below; 1. The traditional village Bangjuk was environmentally friendly hydraulic system which gathers waterways of village into a point including sewage water, retains and flows out to village through agricultural waterway. Through this Bangjuk, they have managed sewage and rainfall runoff flowed out village efficiently. It is not only a detention system of water but a kind of eco-friendly system that flow out water into the rivers after reusing and filtering it. 2. Around five traditional villages and five villages after modernization, this study classified the types of village Bangjuk as three types considering geographic location, size, etc; marsh type of low swamp, high water -low rice field type of natural flow stucture, low water - high rice field type requiring artificial irrigation facility. All the five traditional villages were turned out to be marsh type of low swamp. Geoji, Sanjeri, Ma-am, Yangchon of the agricultural villages were high water-low rice filed type, and Sangchoenri village was classified low water-high rice field type. 3. This study checked up the function of water purification of village Bangjuk. In Wonteo and Geji villages affected by discharge of village sewer and domestic sewage, the efficiency of ammonia nitrogen($NH_3-N$) and total phosphorus(T-P) was 56~95%, which was high. In Sangcheonri and Sanjeri villages strongly affected by stall and farmland, the efficiency of suspended solids(SS) was 70~85%, and that of total nitrogen(T-N) and total phosphorus(T-P) was 5.3~65%. 4. A water purification system can be found out in the system of village Bangjuk that filter out village sewage and rainfall runoff flowed through the settle and filter of pollution source and denitrification of plants. Through this system of village Bangjuk, it must be used as the basic facilities for the ecological watershed management. The sewage management system of village Bangjuk as a eco-filter must be used and studied as an eco-friendly facility for the ecological watershed management around the subwatershed and catchment.

Analysis of Greenhouse Gas Reduction according to Different Scenarios of Zero Food Waste Residential Buildings (음식물류폐기물 제로화 주거단지 구축 시나리오별 비용 및 환경효과 분석)

  • Oh, Jeong-Ik;Yoon, Eun-Joo;Park, Ire;Kim, Yeong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.353-363
    • /
    • 2016
  • In this study, traditional treatment scenario of food wastes that collected and transported food waste is recycled in large treatment facilities and suggested treatment scenario of onsite zero discharge system that food waste is treated in housing complex were supposed. The scenarios were compared and analyzed by capital expenditure, oil consumption, $CO_2$ emission quantity, operating expenditure and management expenses. The capital expenditure, oil consumption and $CO_2$ emission quantity of small scale dispersion dealing method is the lowest compared to traditional treatment method. As a results, it is possible to obtain the effect that operating expenditure was reduced by 91% and management expenses was reduced by 40% with suggested treatment method. The treatment method that have low capital expenditure is tend to lower oil consumption and $CO_2$ emission quantity. The small scale dispersion dealing method have the lowest capital expenditure, oil consumption and $CO_2$ emission quantity and the linked method with sewage treatment have the highest expenditure and $CO_2$ emission quantity. Eventually, the optimal model of onsite zero discharge system in housing complex is small scale dispersion dealing method.

Cause Analysis for Reduced Effect of Sewer Pipe Improvement Project Based On Investigation of Interceptor Sewers (차집관로의 조사 및 분석을 통한 하수관로정비 사업의 효과 감소 원인 분석)

  • Chae, Myungbyung;Bae, Younghye;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • Interceptor sewer is installed underground near to the river side mostly ofstate-owned land and the management efficiency of public sewage disposal facilities is decreasing as too much infiltration/inflow(I/I) and river flow to interceptor sewer are caused by broken or deteriorated sewer. This also affects the sewer pipeline project and decreases its efficiency. Therefore, the aim of this study is to investigate interceptor sewer which has influence on the reduction of the project effect. The investigation were performed for three study areas. The study includes the investigation of current condition of interceptor sewer(sewer extension, pipe diameter, pipe type, installed year, installed locations, etc), investigation of inside of sewer by CCTV accompanied by pumping and dredging works where required, investigation of inside of manholes by eyes, calculation of pollutant load using the results of investigation of flow quantity and quality. Multipoint investigations were simultaneously performed for flow quantity at confluence area and other investigations were also performed for flow quantity and BOD for interceptor sewer and comparison of pollutant load, investigation of infiltration/inflow(I/I) caused by deterioration of interceptor sewer. As the result of the study, a main reason for reduced effect of sewer pipe improvement project was analyzed as the low-density sewage and I/I in public seweage treatment Facility due to deteriorated and unmanaged interceptor sewers.

Status of Water Quality and Future Plans in the Philippines (필리핀의 수질현황 및 미래 관리계획)

  • Gorme, Joan B.;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.89-103
    • /
    • 2009
  • The Philippines is abundant with rich natural resources such as water. Because of rapid urbanization in the country, most of the water bodies are polluted as a result of domestic, agricultural and industrial activities. The Environmental Management Bureau (EMB) is the main government arm responsible for monitoring and inspection of affected water bodies. Only water bodies with at least four sampling events during dry and wet seasons were included in the assessment of water bodies that passed the DAO 90-34 water quality criteria. Water bodies were monitored for dissolved oxygen (DO), biochemical oxygen demand (BOD), total suspended solids (TSS), and total dissolved solids (TDS), heavy metals, fecal coliform contamination and nitrates. High pollutant concentrations from domestic, agricultural, industrial and nonpoint sources were observed from monitoring events due to inadequate sewage services and treatment facilities in the country. The objective of this paper was to present and evaluate the quality of the water bodies in the Philippines.

  • PDF

Database and User Interface for Pollutant Source and Load Management of Yeungsan Estuarine Lake Watershed Using GIS (GIS를 활용한 영산호 수계 오염원 데이터베이스 구축과 오염원관리 사용자 인터페이스)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.114-126
    • /
    • 2001
  • The purpose of this study is to establish the databases of pollutant sources and water quality measurement data by utilizing GIS, and making the user interface for the management of pollutant sources. Yeongsan Estuarine Lake was formed of a huge levee of 4.35 km constructed by an agricultural reclamation project. Water quality of the reservoir has been degraded gradually, which mainly attributes to increase of point and non-point source pollutant loads from the lake's watershed of 33,374.3 $\textrm{km}^2$ into it. Application of GIS to establishment of the database was researched of pint source such as domestic sewage, industrial wastewater, farm wastes, and fishery wastes, and non-pont source such as residence, rice and upland field, and forest runoffs of the watershed of the lake. NT Acr/Info and ArcView were mainly utilized for the database formation. Land use of the watershed using LANDSAT image data was analyzed for non-point source pollutant load estimation. Pollutant loads from the watershed into the reservoir were calculated using the GIS database and BOD, TN, TP load units of point and non-point sources. Total BOD, TN, TP loads into it reached approximately to 141, 715, 2,094 and 4,743 kg/day respectively. The loads can be used as input parameters for water quality predicting model of it. A user-friendly interface program was developed using Dialog Designer and Avenue Script of AcrView, which can perform spatial analysis of point and non-point sources, calculate pollutant inputs from the sources, update attribute data of them, delete and add point sources, identify locations and volumes of water treatment facilities, and examine water quality data of water sampling points.

  • PDF