• Title/Summary/Keyword: Sequential Tree

Search Result 98, Processing Time 0.047 seconds

A 0.5-2.0 GHz Dual-Loop SAR-controlled Duty-Cycle Corrector Using a Mixed Search Algorithm

  • Han, Sangwoo;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.152-156
    • /
    • 2013
  • This paper presents a fast-lock dual-loop successive approximation register-controlled duty-cycle corrector (SARDCC) circuit using a mixed (binary+sequential) search algorithm. A wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy have been achieved by utilizing the dual-loop architecture and the binary search SAR that achieves the fast duty-cycle correcting property. By transforming the binary search SAR into a sequential search counter after the first DCC lock-in, the proposed dual-loop SARDCC keeps the closed-loop characteristic and tracks variations in process, voltage, and temperature (PVT). The measured duty cycle error is less than ${\pm}0.86%$ for a wide input duty-cycle range of 15-85 % over a wide frequency range of 0.5-2.0 GHz. The proposed dual-loop SARDCC is fabricated in a 0.18-${\mu}m$, 1.8-V CMOS process and occupies an active area of $0.075mm^2$.

Sequential Pattern Mining for Customer Retention in Insurance Industry (보험 고객의 유지를 위한 순차 패턴 마이닝)

  • Lee, Jae-Sik;Jo, Yu-Jeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.274-282
    • /
    • 2005
  • Customer retention is one of the major issued in life insurance industry, in which competition is increasingly fierce. There are many things to do to retain customers. One of those things is to be continuously in touch with all customers. The objective of this study is to design the contact scheduling system(CSS) to support the planers who must touch the customers without having subjective information. Support-planers suffer from lack of information which can be used to intimately touch. CSS that is developed in this study generates contact schedule to touch customers by taking into account existing contact history. CSS has a two stage process. In the first stage, it segments customers according to his or her demographics and contract status data. Then it finds typical pattern and pattern is combined to business rules for each segment. We expert that CSS would support support-planers to make uncontacted customers' experience positive.

  • PDF

Design of Contact Scheduling System(CSS) for Customer Retention (고객유지를 위한 접촉스케줄링시스템의 설계)

  • Lee, Jee-Sik;Cho, You-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.83-101
    • /
    • 2005
  • Customer retention is one of the major issues in life insurance industry, in which competition is increasingly fierce. There are many things for the life insurers to do many things to retain the customers. One of those things is to make sure to keep in touch with all customers. When an insurance-planner resigned, his/her customers must be taken care of by some planner-assistants. This article outlines the design of Contact Scheduling System (CSS) that supports planner-assistants for contacting the customers. Planner-assistants are unable to share the resigned insurance-planner's experience and knowledge regarding the customer relationship management. The CSS developed by employing both Classification And Regression Tree (CART) technique and Sequential Pattern Mining (SPM) technique has a two-stage process. In the first stage, it segments the customers into eight groups by CART model. Then it generates contact scheduling information consisting of contact-purpose, contact-interval and contact-channel, according to the segment's typical contact pattern. Contact-purpose is derived by schedule-driven, event-driven, or business-rule-driven. Schedule-driven contact is determined by SPM model. In the operation of CSS in a realistic situation, it shows a practicality in supporting planner-assistants to keep in touch with the customers efficiently and effectively.

  • PDF

EMQT : A Study on Enhanced M-ary Query Tree Algorithm for Sequential Tag IDs (연속적인 태그 ID들을 위한 M-ary 쿼리 트리 알고리즘의 향상에 관한 연구)

  • Yang, Dongmin;Shin, Jongmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.435-445
    • /
    • 2013
  • One of the most challenging issues in radio frequency identification (RFID) and near field communications (NFC) is to correctly and quickly recognize a number of tag IDs in the reader's field. Unlike the probabilistic anti-collision schemes, a query tree based protocol guarantees to identify all the tags, where the distribution of tag IDs is assumed to be uniform. However, in real implements, the prefix of tag ID is uniquely assigned by the EPCglobal and the remaining part is sequentially given by a company or manufacturer. In this paper, we propose an enhanced M-ary query tree protocol (EMQT), which effectively reduces unnecessary query-response cycles between similar tag IDs using m-bit arbitration and tag expectation. The theoretical analysis and simulation results show that the EMQT significantly outperforms other schemes in terms of identification time, identification efficiency and communications overhead.

Compacted Codeword based Huffman Decoding for MPEG-2 AAC Audio (MPEG-2 AAC 오디오 코더를 위한 컴팩트화 코드워드 기반 허프만 디코딩 기법)

  • Lee, Jae-Sik;Lee, Eun-Seo;Chang, Tae-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.369-370
    • /
    • 2006
  • This paper presents a new method for Huffman decoding specially designed for the MPEG-2 AAC audio. The method significantly enhances the processing efficiency of the conventional Huffman decoding realized with the ordinary binary tree search method. A data structure is newly designed based on the numerical interpretation of the incoming bit stream and its utilization for the offset oriented nodes allocation. The experimental results show the average performance enhancement of 54% and 665%, compared to those of the conventional binary tree search method and the sequential search method, respectively.

  • PDF

Cache Sensitive T-tree Main Memory Index for Range Query Search (범위질의 검색을 위한 캐시적응 T-트리 주기억장치 색인구조)

  • Choi, Sang-Jun;Lee, Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1374-1385
    • /
    • 2009
  • Recently, advances in speed of the CPU have for out-paced advances in memory speed. Main-memory access is increasingly a performance bottleneck for main-memory database systems. To reduce memory access speed, cache memory have incorporated in the memory subsystem. However cache memories can reduce the memory speed only when the requested data is found in the cache. We propose a new cache sensitive T-tree index structure called as $CST^*$-tree for range query search. The $CST^*$-tree reduces the number of cache miss occurrences by loading the reduced internal nodes that do not have index entries. And it supports the sequential access of index entries for range query by connecting adjacent terminal nodes and internal index nodes. For performance evaluation, we have developed a cost model, and compared our $CST^*$-tree with existing CST-tree, that is the conventional cache sensitive T-tree, and $T^*$-tree, that is conventional the range query search T -tree, by using the cost model. The results indicate that cache miss occurrence of $CST^*$-tree is decreased by 20~30% over that of CST-tree in a single value search, and it is decreased by 10~20% over that of $T^*$-tree in a range query search.

  • PDF

Application of Decision Tree for the Classification of Antimicrobial Peptide

  • Lee, Su Yeon;Kim, Sunkyu;Kim, Sukwon S.;Cha, Seon Jeong;Kwon, Young Keun;Moon, Byung-Ro;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.121-125
    • /
    • 2004
  • The purpose of this study was to investigate the use of decision tree for the classification of antimicrobial peptides. The classification was based on the activities of known antimicrobial peptides against common microbes including Escherichia coli and Staphylococcus aureus. A feature selection was employed to select an effective subset of features from available attribute sets. Sequential applications of decision tree with 17 nodes with 9 leaves and 13 nodes with 7 leaves provided the classification rates of $76.74\%$ and $74.66\%$ against E. coli and S. aureus, respectively. Angle subtended by positively charged face and the positive charge commonly gave higher accuracies in both E. coli and S. aureusdatasets. In this study, we describe a successful application of decision tree that provides the understanding of the effects of physicochemical characteristics of peptides on bacterial membrane.

A Efficient Debugging Method for Java Programs (자바 프로그램을 위한 효율적인 디버깅 방법)

  • 고훈준;유원희
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.170-176
    • /
    • 2002
  • Java language is a representative object-oriented language that is used at the various platform and fields. A structure of java language is simpler than traditional procedural-oriented language because of characters of object-oriented language But it is difficult to debug complicated java programs. Debugging has always been a costly part of software development. Syntax errors of java programs is easily found by the current debugging system. But it is difficult to locate logical errors included in java programs. Traditional debugging techniques locating logical errors in java program have been still used with conventional methods that are used at procedural-oriented languages. Unfortunately, these traditional methods are often inadequate for the task of isolating specific program errors. Debugger users may spend considerable time debugging code of program development with sequential methods according as program size is large and is complicated. It is important to easily locate errors included in java program in the software development. In this paper, we apply algorithmic debugging method that debugger user can easily debug programs to java program. This method executes a program and makes an execution tree from calling relation of functions. And it locates errors at the execution tree. So, Algorithmic debugging method can reduce the number of debugging than conventional sequential method.

  • PDF

Improved Tree-Based ${\mu}TESLA$ Broadcast Authentication Protocol Based on XOR Chain for Data-Loss Tolerant and Gigh-Efficiency (데이터 손실에 강하고 효율적 연산을 지원하는 XOR 체인을 이용한 트리기반 ${\mu}TESLA$ 프로토콜 개선)

  • Yeo, Don-Gu;Jang, Jae-Hoon;Choi, Hyun-Woo;Youm, Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.2
    • /
    • pp.43-55
    • /
    • 2010
  • ${\mu}TESLA$ broadcast authentication protocol have been developed by many researchers for providing authenticated broadcasting message between receiver and sender in sensor networks. Those cause authentication delay Tree-based ${\mu}TESLA$[3] solves the problem of authentication delay. But, it has new problems from Merkel hash tree certificate structure. Such as an increase in quantity of data transmission and computation according to the number of sender or parameter of ${\mu}TESLA$ chain. ${\mu}TPCT$-based ${\mu}TESLA$[4] has an advantages, such as a fixed computation cost by altered Low-level Merkel has tree to hash chain. However, it only use the sequential values of Hash chain to authenticate ${\mu}TESLA$ parameters. So, It can't ensure the success of authentication in lossy sensor network. This paper is to propose the improved method for Tree-based ${\mu}TESLA$ by using XOR-based chain. The proposed scheme provide advantages such as a fixed computation cost with ${\mu}$TPCT-based ${\mu}TESLA$ and a message loss-tolerant with Tree-based ${\mu}TESLA$.

Secure Outsourced Computation of Multiple Matrix Multiplication Based on Fully Homomorphic Encryption

  • Wang, Shufang;Huang, Hai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5616-5630
    • /
    • 2019
  • Fully homomorphic encryption allows a third-party to perform arbitrary computation over encrypted data and is especially suitable for secure outsourced computation. This paper investigates secure outsourced computation of multiple matrix multiplication based on fully homomorphic encryption. Our work significantly improves the latest Mishra et al.'s work. We improve Mishra et al.'s matrix encoding method by introducing a column-order matrix encoding method which requires smaller parameter. This enables us to develop a binary multiplication method for multiple matrix multiplication, which multiplies pairwise two adjacent matrices in the tree structure instead of Mishra et al.'s sequential matrix multiplication from left to right. The binary multiplication method results in a logarithmic-depth circuit, thus is much more efficient than the sequential matrix multiplication method with linear-depth circuit. Experimental results show that for the product of ten 32×32 (64×64) square matrices our method takes only several thousand seconds while Mishra et al.'s method will take about tens of thousands of years which is astonishingly impractical. In addition, we further generalize our result from square matrix to non-square matrix. Experimental results show that the binary multiplication method and the classical dynamic programming method have a similar performance for ten non-square matrices multiplication.