References
- Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W. L. , MacDonald, D.L., Beyermanna, M., and Bienerta M. (1997). Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 403, 208-212 https://doi.org/10.1016/S0014-5793(97)00055-0
- Dathe, M. and Wieprecht, T. (1999). Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta. 1462, 71-87 https://doi.org/10.1016/S0005-2736(99)00201-1
- Dathe, M, Nikolenko, H., Meyer, J., Beyermann, M. and Bienert, M (2001). Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 501, 146-150 https://doi.org/10.1016/S0014-5793(01)02648-5
- Dathe, M., Meyer, J., Beyermann, M., Maul, B., Hoischen, C., and Bienert, M. (2002). General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim. Biophys. Acta. 1558, 171-186 https://doi.org/10.1016/S0005-2736(01)00429-1
- Hong, S.Y., Park, T.G., and Lee, K.H.. (2001). The effect of charge increase on the specificity and activity of a short antimicrobial peptide. Peptides 22, 1669-1674 https://doi.org/10.1016/S0196-9781(01)00502-2
- Kim, S., Kim, S.S., Bang, Y.J., Kim, S.J. and Lee B.J. (2003). In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 24, 945-953 https://doi.org/10.1016/S0196-9781(03)00194-3
- Kneller, D.G,, Cohen, F.E, and Langridge, R. (1990). Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. BioI. 214, 171-182 https://doi.org/10.1016/0022-2836(90)90154-E
- Kyte, J. and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. BioI. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
- Mitchell, T.M. (1997). Machine Learning (The McGrow-Hill Companies Inc.)
- Park, J.M., Jung, J.E., and Lee, B.J. (1994). Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochern. Biophys, Res. Comrn. 205, 948-954 https://doi.org/10.1006/bbrc.1994.2757
- Pathak, N., Salas-Auvert, R., Ruche, G., Janna, M.H., McCarthy, D., and Harrison, R.G. (1995). Comparison of the effects of hydrophobicity, amphiphilicity, and alphahelicity on the activities of antimicrobial peptides. Proteins 22, 182-186 https://doi.org/10.1002/prot.340220210
- Quinlan, J.R. (1993). C4.5:Programs for Machine Learning (Morgan Kaufmann Publisher Inc.)
- Rocca, P.L., Biggin, P.C., Tieleman, D.P., and Sansom MSP. (1999a). Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim. Biophys. Acta. 1462, 185-200 https://doi.org/10.1016/S0005-2736(99)00206-0
- Rocca, P.L., Shai, Y., and Sansom, M.S.P. (1999b). Peptide -bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophys. Chem. 76, 145-159 https://doi.org/10.1016/S0301-4622(98)00232-4
- Salzberg, S., Deicher, A.L., Fasman K.H., and Henderson L. (1998). A decision tree system for finding genes in DNA. J. Comput. BioI. 5, 667-680 https://doi.org/10.1089/cmb.1998.5.667
- Selbig, J., Mevissen, T., and Lenauer, T. (1999). Decision tree-based formation of consensus protein secondary structure prediction. Bioinformatics 15, 1039-1046 https://doi.org/10.1093/bioinformatics/15.12.1039
- Stark, M., Liu, L.P., and Deber, C.M. (2002). Cationic hydrophobic peptides with antimicrobial activity. Antimicrob. Agents Chemother. 46, 3585-3590 https://doi.org/10.1128/AAC.46.11.3585-3590.2002
- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Stat. Soc. B. 36,111-147
- Tachi, T., Epand, R.F., Epand, R.M., and Matsuzaki, M. (2002). Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41, 10723-10731 https://doi.org/10.1021/bi0256983
- Vapnik, V.N. (1995). The Nature of Statistical Learning Theory (New York: Springer Verlag)
- Weiss, S.M. and kulikowski, C.A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. (San Mateo: Morgan Kaufmann Publisher Inc.)
- Xia, X., Maliski, E., Cheetham, J., and Poppe, L. (2003). Solubility prediction by recursive partitioning. Pharm. Res. 20,1634-1640 https://doi.org/10.1023/A:1026195503465
- Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389-395 https://doi.org/10.1038/415389a