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Abstract

The purpose of this study was to investigate the use of
decision tree for the classification of antimicrobial
peptides. The classification was based on the activities
of known antimicrobial peptides against common
microbes including Escherichia coli and Staphylococcus
aureus. A feature selection was employed to select an
effective subset of features from available attribute sets.
Sequential applications of decision tree with 17 nodes
with 9 leaves and 13 nodes with 7 leaves provided the
classification rates of 76.74% and 74.66% against E. coli
and 5. aureus, respectively. Angle subtended by positively
charged face and the positive charge commonly gave
higher accuracies in both E. coliand S. aureus datasets. In
this study, we describe a successtul application of decision
tree that provides the understanding of the effects of
physicochemical characteristics of peptides on bacterial
membrane.

Keywords: decision tree, classification, antimicrobial peptides

Introduction

During the last two decades, a number of studies on
bactericidal peptides have been carried out for the
purpose of industrial, pharmaceutical and medical use
with great interest (Park et al., 1994; Kim et al., 2003;
Zasloff et al., 2002). Naturally occurring antimicrobial
peptides and a set of artificial peptides have been used
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as templates for generating synthetic peptides with
substitutions and deletions of amino acids to analyze the
interaction relationship between bacterial membrane
and the physicochemical properties of peptides such as
hydrophobicity, hydrophobic moment and net charge
(Dathe et al., 2001; Hong et al., 2001; Dathe et al., 2002;
Dathe et al, 1997). However, as demonstrated by
numerous studies on structure-activity relationship (SAR),
a precise interpretation of differences in the activity of
antimicrobial peptides is often difficult due to the
existence of complex interaction between the peptides
and bacterial membrane (Rocca et al., 1999a; Rocca et
al., 1999b).

A decision tree is a kind of supervised machine
learning method that is often appropriate for describing
complex nonlinear relationships between quantitative
features and some a priori classification (both
guantitative and qualitative) (Mitchell et al., 1997). One
advantage of the decision tree approach is that the
decision rules can be displayed in easy-to-interpret
graphical manner. Unlike many other machine-learning
methods that rely on abstract interpretation of the feature
space (Vapnik et al., 1995), the decision tree gives
sequential decision splits (nodes of the tree) based on
some marginal feature sets, which in tum can be
interpreted in terms of the biological or chemical process;
in our case, in terms of peptide properties.

Materials and methods

Data set

A total of 402 peptides were collected from the literature
of antimicrobial peptides to form a data set. It consists of
natural antibiotic peptides and their analogs generated
by changing physicochemical parameters of the natural
antibiotic peptides. These peptides were divided into two
groups according to their reported minimal inhibitory
concentration (MIC) values that present the strength of
antimicrobial activities in molar concentrations. Peptides
with MIC values of 10 uM or below were grouped as
strong peptides in terms of antimicrobial activity,
whereas those with MIC values above 40 uM were
grouped as weak antimicrobial peptides. Among the
peptide, we used 133 antimicrobial peptides which had
MIC values above 40 or below 10 yM against E. coli. We
excluded data between 10 yM and 40 uM , because it is
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difficult to determine strong or weak. In the same way,
we included 102 antimicrobial peptides with MIC values
against S. aureus.

The data set of E. coli consists of 74 peptides with
strong antimicrobial activity and 59 peptides with weak
antimicrobial activity. In case of S. aureus, 41 peptides
were strong and the rest were weak with respect to their
antimicrobial activities.

Decision trees

Decision trees have been applied to various studies for
biological data mining, such as protein secondary
structure prediction (Selbig et al., 2002), gene prediction
in vertebrate DNA sequences (Salzberg et al., 1998) and
small molecule solubility prediction (Xia et al., 2003). A
classification and prediction of a given dataset by a
decision tree is achieved by constructing a rooted tree
graph with the leaves of the tree labeled with the values
of the classification variable (e.g., strong/weak anti-
bacterial activity) and the intermediate nodes each
representing a test based on some feature subset. Each
branch of the decision tree is labeled with the critical
values for the test specified by the node above the
branch (Quinlan ef al, 1993). In our application of a
decision tree to the SAR of anti-microbial peptides, the
physicochemical properties of peptides were the basis of
tests at intermediate nodes and the resultant terminal
leaves were labeled with the strength of antimicrobial
activity. Structural parameters, such as peptide helicity,
hydrophobicity, hydrophobic moment, peptide charge
and the size of the hydrophobic/hydrophilic domain were
influenced on membrane activity. Furthermore, it is
assessed that the potential of these parameters increase
antimicrobial activity (Dathe ef al, 1999). Of many
physicochemical properties of peptides, the following
attributes were selected as the feature set for the
decision tree algorithm: Kyte-Doolittle hydrophobicity
(Kyte et al., 1982), maximum hydrophobicity (maxH)
which is the best hydrophobic score obtained by calculating
the average of hydrophobicity (H; window size was 5),
and hydrophobic moment (Hm). Hydrophobic moment is
the hydrophobicity of a peptide measured for a specified
angle of - rotation per residue. The strength of each
periodic component is the quantity that has been termed
the hydrophobic moment. For example, alpha helices
tend to have strong periodicity in the hydrophobicity of
about 3.6 residues and beta sheets about 2.3 residues. It
means that many peptide sequences tend to form the
periodic structure that maximizes their amphiphilicity.
Amphiphilicity of the peptides has been reported as the
most important factor governing antimicrobial activity
compared to mean hydrophobicity or alpha-helix content

(Pathak et al., 1995). We also include other factors like
helicity (He) predicted by NNPREDICT which is a web-
based secondary structure program (Kneller et al.,
1990), angle subtended by positively charged face (A),
net charges (netC), sum of positive charges (pC) and
sum of negative charges (nC). Furthermore, additional
attributes confined to the helical portion of the peptides
(i.e. spatial arrangement of each amino acid) were
selected to increase the accuracy of classification; they
include hydrophobicity (H/h), net charges (netC/h),
positive charges (pC/h), hydrophobic moment (Hnvh),
angle subtended by positively charged face (A/h) and
negative charges (nC/h) in helical region.

In this study, the decision was implemented by C4.5.
C4.5 is a software extension of the basic ID3 algorithm
designed by Quinlan (Quinlan et al., 1993). This program
classifies antimicrobial peptides based on selected
attributes which are treated as statistical property called
information gain that measures how well a given attribute
separates the training examples according to their target
classification (Mitchell et al., 1997). Information gain can
be further described by entropy that characterizes the
purity and/or complexity of an arbitrary collection of data.
In the case of peptide data set (S), the entropy of set S
relative to binary classification is defined as

Entropy(8) =—P, log:Pr — P, log: P, (1

where P, is the proportion of positive data (strong anti-
microbial activity) in S and 7, is the proportion of
negative data (weak antimicrobial activity) in S. (In this
study, any entropy with Olog0 is defined to be 0.)
Therefore, information gain can be expressed by the
expected reduction in entropy caused by partitioning the
data set according to selected attributes. More precisely,
the information gain, Gain (S, A) of attribute A, relative to
a collection of data set S is defined as

Gain(S, A) = Entropy( S) — VsaA)Entroby—HS;‘l (s.) @)

where W A) is the set of all possible values for attribute A,
and Svis the subset of S for which attribute A has value
v. Gain(S, Ay is, therefore, the expected reduction in
entropy caused by the knowledge of the value of attribute
A (Mitchell et al., 1997).

Test all combinations of subsets of features

All combinations of 14 features (2'* = 16384) were tested.
We obtained the results of optimal subset of features
which the training error was smallest in each data set.

Evaluation of the classification
The binary classification produced by the decision tree
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was evaluated by using a stratified 5-fold cross-validation
(Stone et al., 1974; Weiss et al., 1991). The training set is
divided into 5 equalsized subsets such that each
example appears in exactly one test set. The folds were
stratified so that they would contain the same
proportions of classes as the original data set. For each
subset, a decision tree is constructed from examples of
the 4 other subsets and tested on examples from the
excluded set. The average error rate over the 5 test sets
is the error rate of a decision tree generated from all the
data (Quinlan et al., 1993).

A decision tree that is too complex may result in over-
fitting the data. As a result, this decision tree may classify
the training data excellently but perform poorly on some
test data. To avoid this problem, we employed a pruning
method described in (Quinlan et al., 1993) to make the
decision tree simpler and more reasonable. Another
approach to avoid this problem is to use a validation set.
We divided a training data set into two. A half of a training
set is used to form the decision tree using c4.5 and the
other of training set is used as a validation set, which is
used to generate rules from the decision tree using c4.5
rules (Quinlan et al., 1993).

The overall rate of success with respect to classification
accuracy is defined as

Accuracy= (IP+ TN) (3)

(TN+ FP+ FN+ 7P) 100
where TP (true positive) is the number of correctly
classified peptides with strong antimicrobial activity, TN
(true negative) is the number of incorrectly classified
peptides with weak antimicrobial activity, FP (false
positive) is the number of incorrectly classified peptides
with weak antimicrobial activity, and FN (false negative)
is the number of incorrectly classified peptides with
strong antimicrobial activity.

Several other statistics are useful for more detailed
evaluation of the performance of the algorithms.

Sensitivity and selectivity are often used for better
evaluation of the precision of algorithms. Sensitivity (S, ,
true positive rate) represents the ability to detect positive
instances, i.e. the proportion of correctly classified
peptides with strong antimicrobial activity among all
antimicrobial peptides with strong antimicrobial activity.
It is a significant factor for determining the classification
efficiency, and it is defined as

___7TP
S»= TPLFN )

Selectivity (., true negative rate) describes the proportion
of correctly classified peptides with low potency amongst
all antimicrobial peptides with low potency. This is
defined as:

S FpL T (6)

Furthermore, in order to evaluate the validity of the
rate of classification, an F-measure is obtained. F-
measure is the sum of average of the measures of
precision and recall. Precision value is a mathematical
presentation of false-positives present in the final
classification while the value for recall contains similar
information as in S,.

TP

<ision= TP+ FN (7)
_ N
recall= TP+ TN (8)

Therefore, the F-measure can be formulated as below

1
+(1—a)x

F— measure= 1

< iston

1
vecall

ax

_ 2x<isionxrecall (9)
<ision+ recall

(Generally, a=0.5)

Result

The decision tree for the classification of the peptide data
set against E. coli was constructed by using subset of
selected features. It composed of 17 nodes with 9
leaves. The rate of correct prediction for E. coli was
approximately 76.64%. The sensitivity was 86.19% while
the selectivity was 62.73%. Furthermore, 72.61% was
achieved for the F-measure suggesting significant
accuracy in the classification. The accuracy and a
graphical illustration of the classification of the data set is
shown in Fig. 1.

The overall classification accuracy was 74.66% for
the data set classified with S. aureus. The tree (13 nodes
with 7 leaves) was simpler than that obtained from the
data set of E. coli. The sensitivity, selectivity and F-
measure were 66.67%, 80.51% and 72.94%, respectively.
The accuracy and F-measure were about the same in
both microbes. The selectivity obtained from the data set
of S. aureus (80.51%) was relatively higher than that
from the data set of E. coli (62.73%). By contrast, the
sensitivity of E. coli (86.19%) is higher than S. aureus
(62.73%).

To compare with the effect of validation set, we
constructed decision tree with and without validation set.
As you see intable 1, the accuracy of using validation set
was improved 5.25% and 3.98%, E. coli, S. aureus,
respectively (Table 1).
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Fig. 1. Afinal pruned decision tree for £, cofi(A) and S. aureus
(B) showing the sequential decision tests for strong/weak
anti-microbial action of peptides. Each node represents a
classification test based on the indicated physico-chemical
variable. The branches are labeled with critical values for the
tests

Table. 1. The accuracy of general and our approach
without validation with validation improvement

microbes set (A) set (B) (B-A)

E. coli 71.50% 76.74% 5.24%

S aureus  70.68% 74.66% 3.98%
Discussion

Classification is the process of finding a set of models
that describe and distinguish data classes or concepts.
Results in this study show that a decision tree with high-
quality classification accuracy can be constructed for the
classification of antimicrobial peptides vis-a-vis the
strength of antimicrobial activity against E. coli and S.
aureus. When comparing the rates of classification
accuracy predicted for E. coli with that of S. aureus, the

rate of classification accuracy for E. coli was
approximately 2.08% higher than that of S. aureus.
However, when considering the fact that the peptide data
set for S. aureus was unevenly distributed between the
strong and weak peptides, the classification result for S.
aureus is as significant as the classification for E. coli.
The values for F-measure are more suitable measures
for estimating the performance for strong antimicrobial
peptides, and the sensitivity(%) value of 86.19% for E.
coliis higher than that for S. aureus (66.67%). Along this
line, the classification accuracy may be further improved
with evenly distributed data set.

As shown in figure 1, the attribute measuring positive
charges in helix region (H) was chosen as the first
intermediate node to classify in E. coli. Attributes
selected by information gain were used to sort peptides
further down the tree to obtain the rate of classification
accuracy of 76.74%. It is evident from the tree that
certain attributes were crucial in achieving high
classification accuracy. Out of 14 attributes selected,
three attributes (H, A and Hm) that were selected gave
higher accuracies in E. coli data set and (He, netC and
A/h) attributes were selected in S. aureus data sets.
Selected features were varied according to bacteria. As
mentioned previously, attributes are physicochemical
properties of the antimicrobial peptides. The decision
tree for the classification of antimicrobial peptides
suggest that these features play crucial role in the
strength of antimicrobial activity, and this finding concurs
with previous reports (Dathe et al., 1999).

The results obtained through this study indicate that a
decision tree algorithm can be an efficient tool for
predicting the activity of antimicrobial peptides. In
particular, the algorithm allows us to extract important
physico-chemical properties, which may be useful for
rational peptide design for many therapeutic uses.
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