• Title/Summary/Keyword: Septic inflammation

Search Result 41, Processing Time 0.026 seconds

Solanum lycopersicum (tomato) ethanol extract elicits anti-inflammatory effects via the nuclear factor kappa B pathway and rescues mice from septic shock

  • Saba, Evelyn;Oh, Mi-Ju;Kwak, Dongmi;Roh, Seong-Soo;Kwon, Hyuk-Woo;Kim, Sung-Dae;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Solanum lycopersicum, commonly known as tomato, is widely used in raw, cooked, or liquid forms because it contains nutritional compounds that are beneficial for human health, including carotenoids, lycopene, ascorbic acid, vitamins, and minerals. The tomato is perhaps the most widely studied fruit, especially with respect to its cardioprotective effects. In this study, we aimed to identify the anti-inflammatory mechanisms by which the tomato elicits its anti-inflammatory properties. We treated murine macrophage RAW 264.7 cells with a tomato ethanol extract and performed various biochemical assays including nitric oxide inhibition, cell viability, RNA extraction, expression of pro-inflammatory mediators and cytokines, and immunoblotting, as well we assessed cell survival rates. Our results have shown for the first time that a tomato ethanol extract treatment can suppress nitric oxide production in a dose-dependent manner without cytotoxicity. Moreover, it inhibits the expression of pro-inflammatory mediators and cytokines and elicits its anti-inflammatory effects via the nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and mitogen-activated protein kinase (MAPK) pathways. In addition, administration of tomato syrup potently rescued mice from septic shock induced by lipopolysaccharide injection. Collectively, our results elucidate details regarding the anti-inflammatory mechanisms of tomato.

Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

  • Park, Donghwan;Ro, MyungJa;Lee, A-Jin;Kwak, Dong-Wook;Chung, Yunro;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.893-899
    • /
    • 2021
  • BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

Anisomycin protects against sepsis by attenuating IκB kinase-dependent NF-κB activation and inflammatory gene expression

  • Park, Gyoung Lim;Park, Minkyung;Min, Jeong-Ki;Park, Young-Jun;Chung, Su Wol;Lee, Seon-Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.545-550
    • /
    • 2021
  • Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.

Isolation. structure. and NF-${\kappa}$B modulatory activity of Harzianum A and B: trichothecene from fungi(B000527)

  • Jin, Hui-Zi;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.320.3-321
    • /
    • 2002
  • Nuclear factor ${\kappa}$B (NF-${\kappa}$B) represents a family of eukaryotic transcription factors participating in the regulation of various cellular genes. Since aberrant regulation of NF-${\kappa}$B has been implicated in the pathogenesis of various diseases including inflammation. asthma. atherosclerosis. AIDS. septic shock. arthritis, and cancer. this transcription factor has been shown to be an interesting target of new drug discovery. (omitted)

  • PDF

Inhibitors of Nitric Oxide Synthesis from Ginseng in Activated Macrophages (활성화한 RAW 264.7 세 포주에서 인삼 Polyacetylene류의 Nitric Oxide 생성저해)

  • 류재하;장세란
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 1998
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by the inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. We have found three polyacetylene compounds which inhibited the production of NO in LPS-activated RAW 264.7 cells. Their structures were identified as panauynol, ginsenoyne A and PQ-6 by the spec- troscopic analysis (IC50 values were 32.3 $\mu$M, 2.3 $\mu$M, 1.5 $\mu$M, respectively). These polyacetylenes may be useful candidates for the development of new drug to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF

A case of bisphosphonate-related osteonecrosis of the jaw with a particularly unfavourable course: a case report

  • Viviano, Massimo;Addamo, Alessandra;Cocca, Serena
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.4
    • /
    • pp.272-275
    • /
    • 2017
  • Bisphosphonates are drugs used to treat osteoclast-mediated bone resorption, including osteoporosis, Paget disease, multiple myeloma, cancer-related osteolysis, and malignant hypercalcemia. The use of these drugs has increased in recent years as have their complications, especially bisphosphonate-related osteonecrosis of the jaw (BRONJ), which more frequently affects the mandible. Here we report a case of BRONJ with a particularly unfavorable course due to cervical inflammation that developed into necrotizing fasciitis, followed by multiorgan involvement leading to septic shock and death.

Wogonin, a flavone from Scutellaria radix, inhibits nitric oxide production from RAW 264.7 cells

  • Kim, Hee-Kee;Cheun, Bong-Sun;Kim, Young-Ha;Kim, Sung-Yong;Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.196-196
    • /
    • 1998
  • Nitric oxide is involved in various physiological processes. Among isoforms of nitric oxide synthase, iNOS is partly responsible for inflammation and septic shock. During our continual search for anti-inflammatory flavonoids, we have found that flavonoids, especially flavones, possessed the inihibitory activity of NO production by iNOS from LPS-activated RAW 264.7 cell. In this study, flavonoids from Scutellaria radix were investigated for their inhibitory activity of nitric oxide production. It was found that wogonin, among tested flavonoids including baicalein, oroxylin A, skullcapflavone II, showed the strongest inhibition of nitric oxide production (IC$\sub$50/ = 17 uM). And this inhibition was, at least partly, due to down-regulation of iNOS enzyme induction, not due to direct inhibition of iNOS enzyme activity.

  • PDF

Hepatic Metabolism of Sulfur Amino Acids During Septic Shock (패혈성 쇼크에서 간의 유황함유 아미노산 대사)

  • Kang, Keon-Wook;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • It has been reported that sulfur-containing intermediates or products in the transsulfuration pathway including S-adenosylmethionine, 5'-methylthioadenosine, glutathione and taurine can prevent liver injury mediated by inflammation response induced by lipopolysaccharide (LPS) treatment. The present study examines the modulation of hepatic metabolism of sulfur amino acid in a model of acute sepsis induced by LPS treatment (5 mg/kg, iv). Serum TNF-alpha and hepatotoxic parameters were significantly increased in rats treated with LPS, indicating that LPS results in sepsis at the doses used in this study. LPS also induced oxidative stress determined by increases in malondialdehyde levels and decreases in total oxy-radical scavenging capacities. Hepatic methionine and glutathione concentrations were decreased, but S-adenosylho-mocysteine, cystathionine, cysteine, hypotaurine and taurine concentrations were increased. Hepatic protein expression of methionine adenosyltransferase, cystathionine beta-synthase and cysteine dioxygenase were induced, but gamma-glutamylcysteine ligase catalytic subunit levels were decreased. The results show that sepsis activates transsulfuration pathway from methionine to cysteine, suggesting an increased requirement for methionine during sepsis.

Yomogin, an Inhibitor of Nitric Oxide Production in LPS-Activated Macrophages

  • Ryu, Jae-Ha;Lee, Hwa-Jin;Jeong, Yeon-Su;Ryu, Shi-Yong;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.481-484
    • /
    • 1998
  • In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF

Inhibition of nitric oxide and TNF-$\alpha$ production by propenone compound through blockaded of NF-$\kappa$B activation in cultured murine macrophages

  • Ju, Hye-Kyung;Lee, Eun-Kyung;Jahng, Yurng-Dong;Lee, Eung-Seok;Chang, Hyeun-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.156.2-157
    • /
    • 2003
  • Lipopolysaccharide (LPS)-stimulated macrophages produced a large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS). This is an important mechanism in macrophages-induced septic shock and inflammation. In the present study, we tested a synthetic propenone compound, l-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) for its ability to inhibit the production of tumor necrosis factor-a (TNF-$\alpha$) and an inducible enzyme, iNOS, in the LPS-stimulated murine macrophage-like cell line, Raw264.7. FPP-3 consistently inhibited nitric oxide (NO) and TNF-$\alpha$ production in a dose dependent manner, with $IC_50$> values of 10.0 and 13.1 $\mu$M, respectively. (omitted)

  • PDF