DOI QR코드

DOI QR Code

Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

  • Park, Donghwan (Department of Biotechnology, College of Life Sciences, Korea University) ;
  • Ro, MyungJa (Department of Biotechnology, College of Life Sciences, Korea University) ;
  • Lee, A-Jin (Department of Biotechnology, College of Life Sciences, Korea University) ;
  • Kwak, Dong-Wook (Department of Biotechnology, College of Life Sciences, Korea University) ;
  • Chung, Yunro (College of Health Solutions, Arizona State University) ;
  • Kim, Jae-Hong (Division of Life Sciences, College of Life Sciences, Korea University)
  • Received : 2021.06.17
  • Accepted : 2021.10.15
  • Published : 2021.12.31

Abstract

BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

Keywords

Acknowledgement

This work was supported by a Bio & Medical Technology Development Program Grant (2017M3A9D8063317) and a Mid-Career Researcher Program Grant (2020R1A2B5B01002046) through the National Research Foundation funded by the Ministry of Science, Information and Communication Technologies (ICT), and Future Planning, Republic of Korea. This work was also supported by a Korea University Grant.

References

  1. Benjamim, C.F., Canetti, C., Cunha, F.Q., Kunkel, S.L., and Peters-Golden, M. (2005). Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J. Immunol. 174, 1616-1620. https://doi.org/10.4049/jimmunol.174.3.1616
  2. Bitto, A., Minutoli, L., David, A., Irrera, N., Rinaldi, M., Venuti, F.S., Squadrito, F., and Altavilla, D. (2012). Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit. Care 16, R32. https://doi.org/10.1186/1364-8535-16-R32
  3. Chaudhry, H., Zhou, J., Zhong, Y., Ali, M.M., McGuire, F., Nagarkatti, P.S., and Nagarkatti, M. (2013). Role of cytokines as a double-edged sword in sepsis. In Vivo 27, 669-684.
  4. Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22. https://doi.org/10.14348/molcells.2020.2329
  5. Choi, E.J., Jeon, C.H., Park, D.H., and Kwon, T.H. (2020). Allithiamine exerts therapeutic effects on sepsis by modulating metabolic flux during dendritic cell activation. Mol. Cells 43, 964-973. https://doi.org/10.14348/molcells.2020.0198
  6. Chousterman, B.G., Swirski, F.K., and Weber, G.F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
  7. Crooks, S.W. and Stockley, R.A. (1998). Leukotriene B4. Int. J. Biochem. Cell Biol. 30, 173-178. https://doi.org/10.1016/S1357-2725(97)00123-4
  8. Dejager, L., Pinheiro, I., Dejonckheere, E., and Libert, C. (2011). Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 19, 198-208. https://doi.org/10.1016/j.tim.2011.01.001
  9. Delano, M.J. and Ward, P.A. (2016). The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330-353. https://doi.org/10.1111/imr.12499
  10. Fleischmann, C., Scherag, A., Adhikari, N.K., Hartog, C.S., Tsaganos, T., Schlattmann, P., Angus, D.C., Reinhart, K., and International Forum of Acute Care Trialists (2016). Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 193, 259-272. https://doi.org/10.1164/rccm.201504-0781OC
  11. Jang, J.H., Wei, J.D., Kim, M., Kim, J.Y., Cho, A.E., and Kim, J.H. (2017). Leukotriene B4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation. Exp. Mol. Med. 49, e402. https://doi.org/10.1038/emm.2017.192
  12. Kim, G.Y., Lee, J.W., Cho, S.H., Seo, J.M., and Kim, J.H. (2009). Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 915-920. https://doi.org/10.1161/ATVBAHA.109.185793
  13. Kwon, S.Y., Ro, M., and Kim, J.H. (2019). Mediatory roles of leukotriene B4 receptors in LPS-induced endotoxic shock. Sci. Rep. 9, 5936. https://doi.org/10.1038/s41598-019-42410-8
  14. Lee, A.J., Cho, K.J., and Kim, J.H. (2015). MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp. Mol. Med. 47, e156. https://doi.org/10.1038/emm.2015.8
  15. Li, H., Han, W., Polosukhin, V., Yull, F.E., Segal, B.H., Xie, C.M., and Blackwell, T.S. (2013). NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators Inflamm. 2013, 503213. https://doi.org/10.1155/2013/503213
  16. Li, J., Zhang, Y., Lou, J., Zhu, J., He, M., Deng, X., and Cai, Z. (2012). Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One 7, e46506. https://doi.org/10.1371/journal.pone.0046506
  17. Li, X.J., Fu, H.Y., Yi, W.J., Zhao, Y.J., Wang, J., Li, J.B., Wang, J.F., and Deng, X.M. (2015). Dual role of leukotriene B4 receptor type 1 in experimental sepsis. J. Surg. Res. 193, 902-908. https://doi.org/10.1016/j.jss.2014.09.013
  18. Liu, A., Wang, W., Fang, H., Yang, Y., Jiang, X., Liu, S., Hu, J., Hu, Q., Dahmen, U., and Dirsch, O. (2015). Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. Eur. J. Pharmacol. 748, 45-53. https://doi.org/10.1016/j.ejphar.2014.12.014
  19. Lundeen, K.A., Sun, B., Karlsson, L., and Fourie, A.M. (2006). Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J. Immunol. 177, 3439-3447. https://doi.org/10.4049/jimmunol.177.5.3439
  20. Luo, C.J., Luo, F., Zhang, L., Xu, Y., Cai, G.Y., Fu, B., Feng, Z., Sun, X.F., and Chen, X.M. (2016). Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann. Intensive Care 6, 56. https://doi.org/10.1186/s13613-016-0157-1
  21. Matsukawa, A., Hogaboam, C.M., Lukacs, N.W., Lincoln, P.M., Strieter, R.M., and Kunkel, S.L. (1999). Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4. J. Immunol. 163, 6148-6154.
  22. Molano Franco, D., Arevalo-Rodriguez, I., Roque i Figuls, M., Montero Oleas, N.G., Nuvials, X., and Zamora, J. (2019). Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst. Rev. 4, CD011811.
  23. Monteiro, A.P., Soledade, E., Pinheiro, C.S., Dellatorre-Teixeira, L., Oliveira, G.P., Oliveira, M.G., Peters-Golden, M., Rocco, P.R., Benjamim, C.F., and Canetti, C. (2014). Pivotal role of the 5-lipoxygenase pathway in lung injury after experimental sepsis. Am. J. Respir. Cell Mol. Biol. 50, 87-95. https://doi.org/10.1165/rcmb.2012-0525OC
  24. Riedemann, N.C., Neff, T.A., Guo, R.F., Bernacki, K.D., Laudes, I.J., Sarma, J.V., Lambris, J.D., and Ward, P.A. (2003). Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J. Immunol. 170, 503-507. https://doi.org/10.4049/jimmunol.170.1.503
  25. Rios-Santos, F., Benjamim, C.F., Zavery, D., Ferreira, S.H., and Cunha, F. (2003). A critical role of leukotriene B4 in neutrophil migration to infectious focus in cecal ligaton and puncture sepsis. Shock 19, 61-65.
  26. Rittirsch, D., Flierl, M.A., and Ward, P.A. (2008). Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776-787. https://doi.org/10.1038/nri2402
  27. Rittirsch, D., Huber-Lang, M.S., Flierl, M.A., and Ward, P.A. (2009). Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31-36. https://doi.org/10.1038/nprot.2008.214
  28. Saeki, K. and Yokomizo, T. (2017). Identification, signaling, and functions of LTB4 receptors. Semin. Immunol. 33, 30-36. https://doi.org/10.1016/j.smim.2017.07.010
  29. Salomao, R., Ferreira, B.L., Salomao, M.C., Santos, S.S., Azevedo, L.C.P., and Brunialti, M.K.C. (2019). Sepsis: evolving concepts and challenges. Braz. J. Med. Biol. Res. 52, e8595. https://doi.org/10.1590/1414-431x20198595
  30. Scott, M.J., Cheadle, W.G., Hoth, J.J., Peyton, J.C., Subbarao, K., Shao, W.H., and Haribabu, B. (2004). Leukotriene B4 receptor (BLT-1) modulates neutrophil influx into the peritoneum but not the lung and liver during surgically induced bacterial peritonitis in mice. Clin. Diagn. Lab. Immunol. 11, 936-941. https://doi.org/10.1128/CDLI.11.5.936-941.2004
  31. Serezani, C.H., Lewis, C., Jancar, S., and Peters-Golden, M. (2011). Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J. Clin. Invest. 121, 671-682. https://doi.org/10.1172/JCI43302
  32. Siegmund, B., Lear-Kaul, K.C., Faggioni, R., and Fantuzzi, G. (2002). Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis. Eur. J. Immunol. 32, 552-560. https://doi.org/10.1002/1521-4141(200202)32:2<552::AID-IMMU552>3.0.CO;2-H
  33. Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M., et al. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801-810. https://doi.org/10.1001/jama.2016.0287
  34. Tager, A.M. and Luster, A.D. (2003). BLT1 and BLT2: the leukotriene B4 receptors. Prostaglandins Leukot. Essent. Fatty Acids 69, 123-134. https://doi.org/10.1016/S0952-3278(03)00073-5
  35. Vakkalanka, J.P., Harland, K.K., Swanson, M.B., and Mohr, N.M. (2018). Clinical and epidemiological variability in severe sepsis: an ecological study. J. Epidemiol. Community Health 72, 741-745. https://doi.org/10.1136/jech-2018-210501
  36. van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P., and Netea, M.G. (2017). The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407-420. https://doi.org/10.1038/nri.2017.36
  37. Yokomizo, T., Izumi, T., and Shimizu, T. (2001). Leukotriene B4: metabolism and signal transduction. Arch. Biochem. Biophys. 385, 231-241. https://doi.org/10.1006/abbi.2000.2168
  38. Ziesmann, M.T. and Marshall, J.C. (2018). Multiple organ dysfunction: the defining syndrome of sepsis. Surg. Infect. (Larchmt.) 19, 184-190. https://doi.org/10.1089/sur.2017.298