Acknowledgement
This work was supported by a Bio & Medical Technology Development Program Grant (2017M3A9D8063317) and a Mid-Career Researcher Program Grant (2020R1A2B5B01002046) through the National Research Foundation funded by the Ministry of Science, Information and Communication Technologies (ICT), and Future Planning, Republic of Korea. This work was also supported by a Korea University Grant.
References
- Benjamim, C.F., Canetti, C., Cunha, F.Q., Kunkel, S.L., and Peters-Golden, M. (2005). Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J. Immunol. 174, 1616-1620. https://doi.org/10.4049/jimmunol.174.3.1616
- Bitto, A., Minutoli, L., David, A., Irrera, N., Rinaldi, M., Venuti, F.S., Squadrito, F., and Altavilla, D. (2012). Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit. Care 16, R32. https://doi.org/10.1186/1364-8535-16-R32
- Chaudhry, H., Zhou, J., Zhong, Y., Ali, M.M., McGuire, F., Nagarkatti, P.S., and Nagarkatti, M. (2013). Role of cytokines as a double-edged sword in sepsis. In Vivo 27, 669-684.
- Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22. https://doi.org/10.14348/molcells.2020.2329
- Choi, E.J., Jeon, C.H., Park, D.H., and Kwon, T.H. (2020). Allithiamine exerts therapeutic effects on sepsis by modulating metabolic flux during dendritic cell activation. Mol. Cells 43, 964-973. https://doi.org/10.14348/molcells.2020.0198
- Chousterman, B.G., Swirski, F.K., and Weber, G.F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
- Crooks, S.W. and Stockley, R.A. (1998). Leukotriene B4. Int. J. Biochem. Cell Biol. 30, 173-178. https://doi.org/10.1016/S1357-2725(97)00123-4
- Dejager, L., Pinheiro, I., Dejonckheere, E., and Libert, C. (2011). Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 19, 198-208. https://doi.org/10.1016/j.tim.2011.01.001
- Delano, M.J. and Ward, P.A. (2016). The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330-353. https://doi.org/10.1111/imr.12499
- Fleischmann, C., Scherag, A., Adhikari, N.K., Hartog, C.S., Tsaganos, T., Schlattmann, P., Angus, D.C., Reinhart, K., and International Forum of Acute Care Trialists (2016). Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 193, 259-272. https://doi.org/10.1164/rccm.201504-0781OC
- Jang, J.H., Wei, J.D., Kim, M., Kim, J.Y., Cho, A.E., and Kim, J.H. (2017). Leukotriene B4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation. Exp. Mol. Med. 49, e402. https://doi.org/10.1038/emm.2017.192
- Kim, G.Y., Lee, J.W., Cho, S.H., Seo, J.M., and Kim, J.H. (2009). Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 915-920. https://doi.org/10.1161/ATVBAHA.109.185793
- Kwon, S.Y., Ro, M., and Kim, J.H. (2019). Mediatory roles of leukotriene B4 receptors in LPS-induced endotoxic shock. Sci. Rep. 9, 5936. https://doi.org/10.1038/s41598-019-42410-8
- Lee, A.J., Cho, K.J., and Kim, J.H. (2015). MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp. Mol. Med. 47, e156. https://doi.org/10.1038/emm.2015.8
- Li, H., Han, W., Polosukhin, V., Yull, F.E., Segal, B.H., Xie, C.M., and Blackwell, T.S. (2013). NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators Inflamm. 2013, 503213. https://doi.org/10.1155/2013/503213
- Li, J., Zhang, Y., Lou, J., Zhu, J., He, M., Deng, X., and Cai, Z. (2012). Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One 7, e46506. https://doi.org/10.1371/journal.pone.0046506
- Li, X.J., Fu, H.Y., Yi, W.J., Zhao, Y.J., Wang, J., Li, J.B., Wang, J.F., and Deng, X.M. (2015). Dual role of leukotriene B4 receptor type 1 in experimental sepsis. J. Surg. Res. 193, 902-908. https://doi.org/10.1016/j.jss.2014.09.013
- Liu, A., Wang, W., Fang, H., Yang, Y., Jiang, X., Liu, S., Hu, J., Hu, Q., Dahmen, U., and Dirsch, O. (2015). Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. Eur. J. Pharmacol. 748, 45-53. https://doi.org/10.1016/j.ejphar.2014.12.014
- Lundeen, K.A., Sun, B., Karlsson, L., and Fourie, A.M. (2006). Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J. Immunol. 177, 3439-3447. https://doi.org/10.4049/jimmunol.177.5.3439
- Luo, C.J., Luo, F., Zhang, L., Xu, Y., Cai, G.Y., Fu, B., Feng, Z., Sun, X.F., and Chen, X.M. (2016). Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann. Intensive Care 6, 56. https://doi.org/10.1186/s13613-016-0157-1
- Matsukawa, A., Hogaboam, C.M., Lukacs, N.W., Lincoln, P.M., Strieter, R.M., and Kunkel, S.L. (1999). Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4. J. Immunol. 163, 6148-6154.
- Molano Franco, D., Arevalo-Rodriguez, I., Roque i Figuls, M., Montero Oleas, N.G., Nuvials, X., and Zamora, J. (2019). Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst. Rev. 4, CD011811.
- Monteiro, A.P., Soledade, E., Pinheiro, C.S., Dellatorre-Teixeira, L., Oliveira, G.P., Oliveira, M.G., Peters-Golden, M., Rocco, P.R., Benjamim, C.F., and Canetti, C. (2014). Pivotal role of the 5-lipoxygenase pathway in lung injury after experimental sepsis. Am. J. Respir. Cell Mol. Biol. 50, 87-95. https://doi.org/10.1165/rcmb.2012-0525OC
- Riedemann, N.C., Neff, T.A., Guo, R.F., Bernacki, K.D., Laudes, I.J., Sarma, J.V., Lambris, J.D., and Ward, P.A. (2003). Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J. Immunol. 170, 503-507. https://doi.org/10.4049/jimmunol.170.1.503
- Rios-Santos, F., Benjamim, C.F., Zavery, D., Ferreira, S.H., and Cunha, F. (2003). A critical role of leukotriene B4 in neutrophil migration to infectious focus in cecal ligaton and puncture sepsis. Shock 19, 61-65.
- Rittirsch, D., Flierl, M.A., and Ward, P.A. (2008). Harmful molecular mechanisms in sepsis. Nat. Rev. Immunol. 8, 776-787. https://doi.org/10.1038/nri2402
- Rittirsch, D., Huber-Lang, M.S., Flierl, M.A., and Ward, P.A. (2009). Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31-36. https://doi.org/10.1038/nprot.2008.214
- Saeki, K. and Yokomizo, T. (2017). Identification, signaling, and functions of LTB4 receptors. Semin. Immunol. 33, 30-36. https://doi.org/10.1016/j.smim.2017.07.010
- Salomao, R., Ferreira, B.L., Salomao, M.C., Santos, S.S., Azevedo, L.C.P., and Brunialti, M.K.C. (2019). Sepsis: evolving concepts and challenges. Braz. J. Med. Biol. Res. 52, e8595. https://doi.org/10.1590/1414-431x20198595
- Scott, M.J., Cheadle, W.G., Hoth, J.J., Peyton, J.C., Subbarao, K., Shao, W.H., and Haribabu, B. (2004). Leukotriene B4 receptor (BLT-1) modulates neutrophil influx into the peritoneum but not the lung and liver during surgically induced bacterial peritonitis in mice. Clin. Diagn. Lab. Immunol. 11, 936-941. https://doi.org/10.1128/CDLI.11.5.936-941.2004
- Serezani, C.H., Lewis, C., Jancar, S., and Peters-Golden, M. (2011). Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J. Clin. Invest. 121, 671-682. https://doi.org/10.1172/JCI43302
- Siegmund, B., Lear-Kaul, K.C., Faggioni, R., and Fantuzzi, G. (2002). Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis. Eur. J. Immunol. 32, 552-560. https://doi.org/10.1002/1521-4141(200202)32:2<552::AID-IMMU552>3.0.CO;2-H
- Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.D., Coopersmith, C.M., et al. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801-810. https://doi.org/10.1001/jama.2016.0287
- Tager, A.M. and Luster, A.D. (2003). BLT1 and BLT2: the leukotriene B4 receptors. Prostaglandins Leukot. Essent. Fatty Acids 69, 123-134. https://doi.org/10.1016/S0952-3278(03)00073-5
- Vakkalanka, J.P., Harland, K.K., Swanson, M.B., and Mohr, N.M. (2018). Clinical and epidemiological variability in severe sepsis: an ecological study. J. Epidemiol. Community Health 72, 741-745. https://doi.org/10.1136/jech-2018-210501
- van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P., and Netea, M.G. (2017). The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407-420. https://doi.org/10.1038/nri.2017.36
- Yokomizo, T., Izumi, T., and Shimizu, T. (2001). Leukotriene B4: metabolism and signal transduction. Arch. Biochem. Biophys. 385, 231-241. https://doi.org/10.1006/abbi.2000.2168
- Ziesmann, M.T. and Marshall, J.C. (2018). Multiple organ dysfunction: the defining syndrome of sepsis. Surg. Infect. (Larchmt.) 19, 184-190. https://doi.org/10.1089/sur.2017.298