• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.023 seconds

Self-positioning fusion system based on estimation of relative coordinates

  • Cho, Hyun-Jong;Lee, Sung-Geun;Cho, Woong-Ho;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.566-572
    • /
    • 2014
  • Recently, indoor navigation has been applied in large convention centers by using wireless sensor networks (WSNs), which provide not only a user's path to be traveled but also orientation and shopping information to increase user's convenience. This paper presents the localization system for estimating relative coordinates without pre-deployment of the reference node based on ultra wide band (UWB) ranging system, which is relatively suitable for indoor localization compared to other wireless communications, and azimuth sensor. The proposed localization system which consists of an azimuth sensor and a mobile node composed of three nodes estimates relative coordinates of the reference node without applying any recursive and time consumption algorithms. Also, in the process of estimating relative coordinates of the reference node, ranging errors are minimized through the proposed technique and the number of nodes can be reduced. Experimental results show the feasibility and validity of the proposed system.

A Strike and Bargaining Routing Algorithm for Energy-Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 Strike and Bargaining 라우팅 기법)

  • Ko, Seung-Woo;Jeong, Jin Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1186-1194
    • /
    • 2012
  • In order to resolve the energy efficiency in wireless sensor networks, a multihop transmission technique is utilized. However, multihop transmission in wireless sensor networks (WSN) has pros and cons. It reduces total energy consumption, while it may cause a severe decrease in network lifetime. To solve this problem, we suggest the so called strike and bargaining algorithm (SBA). The routing path is determined by wages of nodes. Each node negotiates its wage with their neighbor nodes and determine a reasonable value to reach a optimally balanced point. By analysis and simulations, we show SBA can achieve a near optimal solution.

Development of Directed Diffusion Algorithm with Enhanced Performance (향상된 성능을 갖는 Directed Diffusion 알고리즘의 개발)

  • Kim Sung-Ho;Kim Si-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.858-863
    • /
    • 2005
  • Sensor network is subject to novel problems and constraints because it is composed of thousands of tiny devices with very limited resources. The large number of motes in a sensor network means that there will be some failing nodes owing to the lack of battery in sensor nodes. Therefore, it is imperative to save the energy as much as possible. In this work, we propose energy efficient routing algorithm which is based on directed diffusion scheme. In the proposed scheme, some overloads required for reinforcing the gradient path can be effectively eliminated. Furthermore, in order to verify the usefulness of the proposed algorithm, several simulations are executed.

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

Reduced-Pipelined Duty Cycle MAC Protocol (RP-MAC) for Wireless Sensor Network

  • Nguyen, Ngoc Minh;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2433-2452
    • /
    • 2017
  • Recently, the pipeline-forwarding has been proposed as a new technique to resolve the end-to-end latency problem of the duty-cycle MAC protocols in Wireless Sensor Networks (WSNs). Some protocols based on this technique such as PMAC and PRI-MAC have shown an improvement not only in terms of reducing end-to-end latency but also in terms of reducing power consumption. In these protocols, however, the sensor nodes still waste a significant amount of energy for unnecessary idle listening during contention period of upstream nodes to check the channel activity. This paper proposes a new pipeline-forwarding duty-cycle MAC protocol, named RP-MAC (Reduced Pipelined duty-cycle MAC), which tries to reduce the waste of energy. By taking advantage of ACK mechanism and shortening the handshaking procedure, RP-MAC minimizes the time for checking the channel and therefore reduces the energy consumption due to unnecessary idle listening. When comparing RP-MAC with the existing solution PRI-MAC and RMAC, our QualNet-based simulation results show a significant improvement in term of energy consumption.

EEC-FM: Energy Efficient Clustering based on Firefly and Midpoint Algorithms in Wireless Sensor Network

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3683-3703
    • /
    • 2018
  • Wireless sensor networks (WSNs) consist of set of sensor nodes. These sensor nodes are deployed in unattended area which are able to sense, process and transmit data to the base station (BS). One of the primary issues of WSN is energy efficiency. In many existing clustering approaches, initial centroids of cluster heads (CHs) are chosen randomly and they form unbalanced clusters, results more energy consumption. In this paper, an energy efficient clustering protocol to prevent unbalanced clusters based on firefly and midpoint algorithms called EEC-FM has been proposed, where midpoint algorithm is used for initial centroid of CHs selection and firefly is used for cluster formation. Using residual energy and Euclidean distance as the parameters for appropriate cluster formation of the proposed approach produces balanced clusters to eventually balance the load of CHs and improve the network lifetime. Simulation result shows that the proposed method outperforms LEACH-B, BPK-means, Park's approach, Mk-means, and EECPK-means with respect to balancing of clusters, energy efficiency and network lifetime parameters. Simulation result also demonstrate that the proposed approach, EEC-FM protocol is 45% better than LEACH-B, 17.8% better than BPK-means protocol, 12.5% better than Park's approach, 9.1% better than Mk-means, and 5.8% better than EECPK-means protocol with respect to the parameter half energy consumption (HEC).

Position-Based Cluster Routing Protocol for Wireless Microsensor Networks

  • Kim Dong-hwan;Lee Ho-seung;Jin Jung-woo;Son Jae-min;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.330-333
    • /
    • 2004
  • Microsensor nodes is energy limited in sensor networks. If nodes had been stop in working, sensor network can't acquire sensing data in that area as well as routing path though the sensor can't be available. So, it's important to maximize the life of network in sensor network. In this paper, we look at communication protocol, which is modified by LEACH(Low-Energy Adaptive Clustering Hierarchy). We extend LEACH's stochastic cluster-head selection algorithm by a Position-based Selection (PB-Leach). This method is that the sink divides the topology into several areas and cluster head is only one in an area. PB-Leach can prevent that the variance of the number of Cluster-Head is large and Cluster-Heads are concentrated in specific area. Simulation results show that PB-Leach performs better than leach by about 100 to $250\%.$

  • PDF

An Optimization Algorithm for Minimum Energy Broadcast Problem in Wireless Sensor Networks (무선 센서 네트워크에서 최소 전력 브로드캐스트 문제를 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.236-244
    • /
    • 2012
  • The minimum energy broadcast problem is for all deployed nodes to minimize a total transmission energy for performing a broadcast operation in wireless networks. In this paper, we propose a Tabu search algorithm to solve efficiently the minimum energy broadcast problem on the basis of meta-heuristic approach in wireless sensor networks. In order to make a search more efficient, we propose a novel neighborhood generating method and a repair function of the proposed algorithm. We compare the performance of the proposed algorithm with other existing algorithms through some experiments in terms of the total transmission energy of nodes and algorithm computation time. Experimental results show that the proposed algorithm is efficient for the minimum energy broadcast problem in wireless sensor networks.

RSSI-based Indoor Location Tracking System using Wireless Sensor Networks (무선 센서 네트워크를 이용한 RSSI 기반의 실내 위치 추적 시스템)

  • Jung, Kyung-Kwon;Park, Hyun-Sik;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.67-73
    • /
    • 2008
  • This paper describes a system for location tracking wireless sensor nodes in an indoor environment. The sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface. By tagging users with a mobile node and deploying a number of reference nodes at fixed position in the room, the received signal strength indicator can be used to determine the position of tagged users. The system combines Euclidean distance technique with signal strength obtained by measurement driven log-normal path loss model of 2.4 GHz wireless channel. The experimental results demonstrated the ability of this system to estimate the location with a error less than 1.3m.

  • PDF

An Implemention for the Sensor Network System using S-MAC Protocol which is improved in Energy Consumption (높은 에너지 효율로 개선된 S-MAC 프로토콜을 이용한 센서 네트워크 시스템의 구현)

  • Han, Seong-Deok;Moon, Ho-Sun;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.25-30
    • /
    • 2007
  • Sensor Nodes are composed of battery which cannot be easily changed. So, it is very important to reduce energy consumption of Sensor Nodes. In this paper, we implemented Sensor Network system using changed S-MAC to save energy with Zigbee. We deceased energy consumption of node by reducing duty cycle in ACTIVE part. According to experiment, using supposed algorithm is better than using S-MAC about $25\sim30%$ in energy consumption.