• Title/Summary/Keyword: Sensor module

Search Result 1,211, Processing Time 0.187 seconds

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

Study on Development of LED Camping Light Design Based on IOT and Emotional Lighting Contents (IOT 및 감성조명 콘텐츠 기반의 LED 캠핑등 디자인 개발에 관한 연구)

  • Kim, Hee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.332-342
    • /
    • 2018
  • This study is aimed at suggesting information about technical choices for designing LED camping lights based on emotional lighting contents of integrated IOT and design areas which take a central role in creation and knowledge based industries and the procedure for materializing them. 'i-Light,' a portable LED camping light, is 'connected lighting' connecting men, space and emotion and a smart camping light based on IOT and emotional lighting contents. 'i-Light' has two functions. One is about lighting for adjusting color and color temperature naturally and the other is about safety for detecting harmful gases. 'i-Light' also has various emotional functions for experiencing interaction and taste of light. For the purpose, portable LED camping lights were designed, first of all, and then a highly color rendering/full-color lighting module, a smart sensor module and an IOT device platform were developed. In addition, efforts were made to establish detailed data about emotional lighting contents and to develop a Web application based on them. Finally, prototypes of portable LED camping lights were made to get a test bench and usability evaluation from related organizations. According to the results, all of 12 developed emotional lighting contents and three IOT safety sensors were suitable and prototypes were satisfactory. This paper will suggest a direction about actual technical choices for development of contents and products integrating artificial intelligence and big data and about the procedure for materializing them.

An Exploratory research on patent trends and technological value of Organic Light-Emitting Diodes display technology (Organic Light-Emitting Diodes 디스플레이 기술의 특허 동향과 기술적 가치에 관한 탐색적 연구)

  • Kim, Mingu;Kim, Yongwoo;Jung, Taehyun;Kim, Youngmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.135-155
    • /
    • 2022
  • This study analyzes patent trends by deriving sub-technical fields of Organic Light-Emitting Diodes (OLEDs) industry, and analyzing technology value, originality, and diversity for each sub-technical field. To collect patent data, a set of international patent classification(IPC) codes related to OLED technology was defined, and OLED-related patents applied from 2005 to 2017 were collected using a set of IPC codes. Then, a large number of collected patent documents were classified into 12 major technologies using the Latent Dirichlet Allocation(LDA) topic model and trends for each technology were investigated. Patents related to touch sensor, module, image processing, and circuit driving showed an increasing trend, but virtual reality and user interface recently decreased, and thin film transistor, fingerprint recognition, and optical film showed a continuous trend. To compare the technological value, the number of forward citations, originality, and diversity of patents included in each technology group were investigated. From the results, image processing, user interface(UI) and user experience(UX), module, and adhesive technology with high number of forward citations, originality and diversity showed relatively high technological value. The results provide useful information in the process of establishing a company's technology strategy.

Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus (관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용)

  • Jung, Ji-Yong;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.38-46
    • /
    • 2011
  • 3D motion analysis system which is currently widely used for walking analysis has limitations due to both necessity of wide space for many cameras for measurement, high cost, and complicated preparation procedure, which results in low accessability in use and application for clinical diagnosis. To resolve this problem, we developed 3-dimensional wireless ambulatory measurement system based on inertial sensor which can be easily applicable for clinical diagnosis for lower extremity deformity and developed system was evaluated by applying for 10 elderly people with diabetes mellitus. Developed system was composed of wireless ambulatory measurement module that consists of inertial measurement unit (IMU) which measures the gait characteristics, microcontroller which collects and precesses the inertial data, bluetooth device which transfers the measured data to PC and Window's application for storing and processing and analyzing received data. This system will utilize not only to measure lower extremity (foot) problem conveniently in clinical medicine but also to analyze 3D motion of human in other areas as sports science, rehabilitation.

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.

Implementation of Smart Shopping Cart using Object Detection Method based on Deep Learning (딥러닝 객체 탐지 기술을 사용한 스마트 쇼핑카트의 구현)

  • Oh, Jin-Seon;Chun, In-Gook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.262-269
    • /
    • 2020
  • Recently, many attempts have been made to reduce the time required for payment in various shopping environments. In addition, for the Fourth Industrial Revolution era, artificial intelligence is advancing, and Internet of Things (IoT) devices are becoming more compact and cheaper. So, by integrating these two technologies, access to building an unmanned environment to save people time has become easier. In this paper, we propose a smart shopping cart system based on low-cost IoT equipment and deep-learning object-detection technology. The proposed smart cart system consists of a camera for real-time product detection, an ultrasonic sensor that acts as a trigger, a weight sensor to determine whether a product is put into or taken out of the shopping cart, an application for smartphones that provides a user interface for a virtual shopping cart, and a deep learning server where learned product data are stored. Communication between each module is through Transmission Control Protocol/Internet Protocol, a Hypertext Transmission Protocol network, a You Only Look Once darknet library, and an object detection system used by the server to recognize products. The user can check a list of items put into the smart cart via the smartphone app, and can automatically pay for them. The smart cart system proposed in this paper can be applied to unmanned stores with high cost-effectiveness.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

Implementation of Wired Sensor Network Interface Systems (유선 센서 네트워크 인터페이스 시스템 구현)

  • Kim, Dong-Hyeok;Keum, Min-Ha;Oh, Se-Moon;Lee, Sang-Hoon;Islam, Mohammad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.31-38
    • /
    • 2008
  • This paper describes sensor network system implementation for the IEEE 1451.2 standard which guarantees compatibilities between various wired sensors. The proposed system consists of the Network Capable Application Processor(NCAP) in the IEEE 1451.0, the Transducer Independent Interface(TII) in the IEEE 1451.2, the Transducer Electronic Data Sheet(TEDS) and sensors. The research goal of this study is to minimize and optimize system complexity for IC design. The NCAP is implemented using C language in personal computer environment. TII is used in the parallel port between PC and an FPGA application board. Transducer is implemented using Verilog on the FPGA application board. We verified the proposed system architecture based on the standards.