• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,892, Processing Time 0.026 seconds

IoT MQTT Security Protocol Design Using Chaotic Signals (혼돈신호를 이용한 IoT의 MQTT 보안 프로토콜 설계)

  • Yim, Geo-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.778-783
    • /
    • 2018
  • With the rapid advancement of information and communication technology and industrial technologies, a hyper-connected society is being realized to connect human beings, all programs and things via the Internet. IoT (Internet of Thing), which connects a thing and another thing, and things and human beings, gathers information to realize the hyper-connected society. MQTT (Message Queuing Telemetry Transport) is a push-technology-based light message transmission protocol that was developed to be optimized to the limited communication environment such as IoT. In pursuing the hyper-connected society, IoT's sensor environment information is now being used as a wide range of information on people's diseases and health management. Thus, security problems of such MQTT include not only the leak of environmental information but also the personal information infringement. To resolve such MQTT security problems, we have designed a new security MQTT communication by applying the initial-value sensitivity and pseudorandomness of the chaotic system to the integrity and confidentiality. The encryption method using our proposed chaotic system offers a simple structure and a small amount of calculation, and it is deemed to be suitable to the limited communication environment such as IoT.

A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors (MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로)

  • Ju, Min-sik;Jeong, Baek-ryong;Choi, Se-young;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.569-572
    • /
    • 2014
  • This paper presents a CMOS switched-capacitor interface circuit for MEMS capacitive sensors. It consist of a capacitance to voltage converter(CVC), a second-order ${\Sigma}{\Delta}$ modulator, and a comparator. A bias circuit is also designed to supply constant bias voltages and currents. This circuit employes the correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques to reduce low-frequency noise and offset. The designed CVC has a sensitivity of 20.53mV/fF and linearity errors less than 0.036%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 5% as the input voltage amplitude increases by 100mV. The designed interface circuit shows linearity errors less than 0.13%, and the current consumption is 0.73mA. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V. The size of the designed chip including PADs is $1117um{\times}983um$.

  • PDF

The design of the mobile data processing system for noise measured in a living environment (생활 환경의 소음 측정을 위한 모바일 데이터 처리 시스템의 설계)

  • Choo, Min-ji;Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.993-995
    • /
    • 2014
  • Typical dwelling pattern of apartment houses in Korea. Because of this the noise of life problem arise, complaints are surging. In real-life, if suffering is unavoidable due to ambient noise, to handle a civil complaint the using a noise meter. At home, it is difficult to measure the noise using professional equipment. So, many uses smartphone application in general. But released existing noise measurement application has different value from the sensor sensitivity for each smartphone model to same situation. The value is lacks precision and this is not considered as having been made by measuring the actual noise purpose. Therefore in this paper, we propose a mobile data processing system for the living environment of noise measurement using a smartphone. Benefits of this study is to improve the accuracy of noise measurements and to find direction of noise to handle complaints.

  • PDF

X-ray Image Correction Model for Enhanced Foreign Body Detection in Metals (금속 내부의 이물질 검출 향상을 위한 X-ray 영상 보정 모델)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.15-21
    • /
    • 2019
  • X-rays with shorter wavelengths than ultraviolet light have very good penetration power. It is convergence in industrial and medical fields has been used a lot. n particular, in the industrial field, various researches have been conducted on the detection of foregin body inside metal that can occur in the production process of products such as metal using x-ray, a non-destructive inspection device. Detectors are becoming increasingly popular for the popularization of DR (Digital Radiography) photography methods that digitally acquire X-ray video images. However, there are cases where foreign body detection is impossible depending on the sensor noise and sensitivity inside the detector. When producing a metal product, since the defective rate of the produced product may increase due to contamination of the foreign body, accurate detection is necessary. In this paper, we provide a correction model for X-ray images acquired in order to improve the efficiency of defect detection such as foreign body inside metal. When applied to defect detection in the production process of metal products through the proposed model, it is expected that the detection of product defects can be processed accurately and quickly.

Implementation of Optical Sensor based on Block Surface Wave and Diffraction Grating Profile (Block 표면파와 회절 격자구조에 기초한 광학 센서의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.143-148
    • /
    • 2021
  • A systematic study of Bloch surface wave (BSW), which is created by guided mode resonance (GMR) of dielectric multilayer structures with a grating profile, is presented to analyze the sensing performance of bio-sensors. The effect of structural parameters on optical behavior is evaluated by using Babinet's principle and modal transmission-line theory. The sensitivity of designed bio-sensors is proportional to the grating constant at wavelength spectrum, and inversely proportional to the normal wave vector of incident electromagnetic wave at angular spectrum. Numerical results for two devices with SiO/SiO2 and TiO2/SiO2 multilayer dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based bio-sensors from infrared to visible-band range.

A study on Reliability Analysis for Prediction Technology of Water Content in the Ground using Hyperspectral Informations (초분광정보를 이용한 지반의 함수비 예측 기술의 신뢰성 분석 연구)

  • Lee, Kicheol;Ahn, Heechul;Park, Jeong-Jun;Cho, Jinwoo;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.141-149
    • /
    • 2021
  • In this study, an laboratory experiment was performed for prediction technology of water content in the ground using hyperspectral information. And the spectral reflectance with a specific wavelength band was obtained according to the fine and water content. Through it, the spectral information was normalized with the spectral index of the existing literature, and the relationship with the fine and water contents and the reliability of the prediction technology were analyzed. As a result of analysis, the spectral reflectance is decreased when the water and fine contents are increased under the high water contents. In addition, the reliability of prediction technology of water content was evaluated by examining 7 different spectral index calculation methods. Among them, DVI showed relatively high prediction reliability and was superior to other calculation methods in terms of sensitivity.

Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film (탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발)

  • Lee, Dongwook;Ahn, Heeho;Seo, Byeong-Gwuan;Lee, Seung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Activity Type Detection Of Random Forest Model Using UWB Radar And Indoor Environmental Measurement Sensor (UWB 레이더와 실내 환경 측정 센서를 이용한 랜덤 포레스트 모델의 재실활동 유형 감지)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.899-904
    • /
    • 2022
  • As the world becomes an aging society due to a decrease in the birth rate and an increase in life expectancy, a system for health management of the elderly population is needed. Among them, various studies on occupancy and activity types are being conducted for smart home care services for indoor health management. In this paper, we propose a random forest model that classifies activity type as well as occupancy status through indoor temperature and humidity, CO2, fine dust values and UWB radar positioning for smart home care service. The experiment measures indoor environment and occupant positioning data at 2-second intervals using three sensors that measure indoor temperature and humidity, CO2, and fine dust and two UWB radars. The measured data is divided into 80% training set data and 20% test set data after correcting outliers and missing values, and the random forest model is applied to evaluate the list of important variables, accuracy, sensitivity, and specificity.

Development of a Laser Absorption NO/$NO_2$ Measuring System for Gas Turbine Exhaust Jets

  • Zhu, Y.;Yamada, H.;Hayashi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.802-806
    • /
    • 2004
  • For the protection of the local air quality and the global atmosphere, the emissions of trace species including nitric oxides (NO and NO$_2$) from gas turbines are regulated by local governments and by the International Civil Aviation Organization. In-situ measurements of such species are needed not only for the development of advanced low-emission combustion concepts but also for providing emissions data required for the sound assessment of the effects of the emissions on environment. We have been developing a laser absorption system that has a capability of simultaneous determination of NO and NO$_2$concentrations in the exhaust jets from aero gas turbines. A diode laser operating near 1.8 micrometer is used for the detection of NO while a separated visible tunable diode laser operating near 676 nanometers is used for NO$_2$. The sensitivities at elevated temperature conditions were determined for simulated gas mixtures heated up to 500K in a heated cell of a straight 0.5 m optical path. Sensitivity limits estimated as were 30 ppmv-m and 3.7 ppmv-m for NO and NO$_2$, respectively, at a typical exhaust gas temperature of 800K. Experiments using the simulated exhaust flows have proven that $CO_2$ and $H_2O$ vapor - both major combustion products - do not show any interference in the NO or NO$_2$ measurements. The measurement system has been applied to the NO/NO$_2$ measurements in NO and NO$_2$ doped real combustion gas jets issuing from a rectangular nozzle having 0.4 m optical path. The lower detection limits of the system were considerably decreased by using a multipass optical cell. A pair of off-axis parabola mirrors successfully suppressed the beam steering in the combustion gas jets by centralizing the fluctuating beam in sensor area of the detectors.

  • PDF

Review on CNT-based Electrode Materials for Electrochemical Sensing of Ascorbic Acid

  • P Mary Rajaitha;Runia Jana;Sugato Hajra;Swati Panda;Hoe Joon Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.131-139
    • /
    • 2023
  • Ascorbic acid plays a crucial role in the regulation of neurotransmitters and enzymes in the central nervous system. Maintaining an optimal level of ascorbic acid, which is between 0.6-2 mg/dL, is vital for preventing oxidative stress and associated health conditions, such as cancer, diabetes, and liver disease. Therefore, the detection of ascorbic acid is of the utmost importance. Electrochemical sensing has gained significant attention among the various detection methods, owing to its simplicity, speed, affordability, high selectivity, and real-time analysis capabilities. However, conventional electrodes have poor signal response, which has led to the development of modified electrodes with better signal response and selectivity. Carbon nanotubes (CNTs) and their composites have emerged as promising materials for the electrochemical detection of ascorbic acid. CNTs possess unique mechanical, electrical, and chemical properties that depend on their structure, and their large surface area and excellent electron transport properties make them ideal candidates for electrochemical sensing. Recently, various CNT composites with different materials and nanoparticles have been studied to enhance the electrochemical detection of ascorbic acid. Therefore, this review aims to highlight the significance of CNTs and their composites for improving the sensitivity and selectivity of ascorbic acid detection. Specifically, it focuses on the use of CNTs and their composites in electrochemical sensing to revolutionize the detection of ascorbic acid and contribute to the prevention of oxidative stress-related health conditions. The potential benefits of this technology make it a promising area for future research and development.