Acknowledgement
This study was supported by the Daegu Gyeongbuk Institute of Science and Technology (DGIST) R&D Program (22-SENS-01) funded by the Ministry of Science and ICT of Korea.
References
- B. Mittu, Z. R. Bhat, A. Chauhan, J. Kour, A. Behera, and M. Kaur, "Ascorbic Acid", Elsevier Inc., pp. 289-302, 2021.
- T. Dodevska, D. Hadzhiev, and I. Shterev, "A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications", Micromachines, Vol. 14, No. 1, p. 41, 2022.
- A.M. Pisoschi, A. Pop, A.I. Serban, and C. Fafaneata, "Electrochemical methods for ascorbic acid determination", Electrochim. Acta, Vol. 121, pp. 443-460, 2014. https://doi.org/10.1016/j.electacta.2013.12.127
- K. Dhara, and R.M. Debiprosad, "Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection", Anal. Biochem., Vol. 586, p. 113415, 2019.
- A. Manjari Padhan, P. Mary Rajaitha, S. Nayak, S. Hajra, M. Sahu, Z. Jaglicic, P. Kozelj, and H.J. Kim, "Synthesis and application of mixed-spinel magnesioferrite: structural, vibrational, magnetic, and electrochemical sensing properties", Mater. Chem. Front., Vol. 7, No. 1, pp. 72-84, 2022. https://doi.org/10.1039/D2QM00628F
- S. Chaturvedi, S. Khan, R.K. Bhunia, K. Kaur, and S. Tiwari, "Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health", Physiol. Mol. Biol. Plants, Vol. 28, No. 4, pp. 871-884, 2022. https://doi.org/10.1007/s12298-022-01172-w
- C. Kagathara, K. Odedra, N. Vadia, and J. Iran, "Development of HPTLC method for the simultaneous estimation of quercetin, curcumin, and ascorbic acid in herbal formulations", Chem. Soc., Vol. 19, No. 10, pp. 4129-4138, 2022.
- P.C. Motsaathebe, and O.E. Fayemi, "Electrochemical Detection of Ascorbic Acid in Oranges at MWCNT-AONP Nanocomposite Fabricated Electrode", Nanomaterials, Vol. 12, No. 4, pp. 1-11, 2022. https://doi.org/10.3390/nano12040645
- P. Wu, Y. Huang, X. Zhao, D. Lin, L. Xie, Z. Li, Z. Zhu, H. Zhao, and M. Lan, "MnFe2O4/MoS2 nanocomposite as Oxidase-like for electrochemical simultaneous detection of ascorbic acid, dopamine and uric acid", Microchem. J., Vol. 181, p. 107780, 2022.
- F.O. Silva, "Total ascorbic acid determination in fresh squeezed orange juice by gas chromatography", Food Control, Vol. 16, No. 1, pp. 55-58, 2005. https://doi.org/10.1016/j.foodcont.2003.11.007
- H. Yang, Z. Liu, C. Liu, and Y. Zhang, "FeMoO4nanospheres-based nanozymatic colorimetry for rapid and sensitive pyrophosphate detection", J. Mater. Chem. B, Vol. 10, No. 2, pp. 321-327, 2022. https://doi.org/10.1039/D1TB01892B
- F. Chen, B. Fang, and S. Wang, "A Fast and Validated HPLC Method for Simultaneous Determination of Dopamine, Dobutamine, Phentolamine, Furosemide, and Aminophylline in Infusion Samples and Injection Formulations", J. Anal. Methods Chem., Vol. 2021, No. d, pp. 1-9, 2021.
- A. Versari, A. Mattioli, G. P. Parpinello, and S. Galassi, "Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis", Food Control, Vol. 15, No. 5, pp. 355-358, 2004. https://doi.org/10.1016/S0956-7135(03)00097-5
- A. Pandikumar, G. T. Soon How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, "Graphene and its nanocomposite material based electrochemical sensor platform for dopamine", RSC Adv., Vol. 4, No. 108, pp. 63296-63323, 2014. https://doi.org/10.1039/C4RA13777A
- P. M. Rajaitha, S. Hajra, A. M. Padhan, S. Panda, M. Sahu, and H. J. Kim, "An electrochemical sensor based on multiferroic NdFeO3 particles modified electrode for the detection of H2O2", J. Alloys Compd., Vol. 915, p. 165402, 2022.
- L. Liu, W. Ma, and Z. Zhang, "Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications", Small, Vol. 7, No. 11, pp. 1504-1520, 2011. https://doi.org/10.1002/smll.201002198
- C. B. Jacobs, M. J. Peairs, and B. J. Venton, "Review: Carbon nanotube based electrochemical sensors for biomolecules", Anal. Chim. Acta, Vol. 662, No. 2, pp. 105-127, 2010. https://doi.org/10.1016/j.aca.2010.01.009
- A. J. Saleh Ahammad, J. J. Lee, and M. A. Rahman, "Electrochemical sensors based on carbon nanotubes", Sensors, Vol. 9, No. 4, pp. 2289-2319, 2009. https://doi.org/10.3390/s90402289
- P. Yanez-Sedeno, J. M. Pingarron, J. Riu, and F. X. Rius, "Electrochemical sensing based on carbon nanotubes", TrAC - Trends Anal. Chem., Vol. 29, No. 9, pp. 939-953, 2010. https://doi.org/10.1016/j.trac.2010.06.006
- u. Anik, S. Timur, and Z. Dursun, "Metal organic frameworks in electrochemical and optical sensing platforms: a review", Microchim. Acta, Vol. 186, No. 3, pp. 18-24, 2019. https://doi.org/10.1007/s00604-018-3135-5
- J. M. Goncalves, P. R. Martins, D. P. Rocha, T. A. Matias, M. S. S. Juliao, R. A. A. Munoz, and L. Angnes, "Recent trends and perspectives in electrochemical sensors based on MOF-derived materials", J. Mater. Chem. C, Vol. 9, No. 28, pp. 8718-8745, 2021. https://doi.org/10.1039/D1TC02025K
- W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, and S. K. Ghosh, "Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications", Chem. Soc. Rev., Vol. 46, No. 11, pp. 3242-3285, 2017. https://doi.org/10.1039/C6CS00930A
- Z. Liu, W. He, and Z. Guo, "Metal coordination in photoluminescent sensing", Chem. Soc. Rev., Vol. 42, No. 4, pp. 1568-1600, 2013. https://doi.org/10.1039/c2cs35363f
- L. Xiao, R. Xu, Q. Yuan, and F. Wang, "Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon", Talanta, Vol. 167, pp. 39-43, 2017. https://doi.org/10.1016/j.talanta.2017.01.078
- W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan, H. Wang, B. Ning, H. Xu, and X. Huang, "Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks", Adv. Mater., Vol. 30, No. 23, pp. 1-9, 2018. https://doi.org/10.1002/adma.201800917
- Y. Li, K. Jiang, J. Zhang, T. Xia, Y. Cui, Y. Yang, and G. Qian, "A turn-on fluorescence probe based on post-modified metal-organic frameworks for highly selective and fast-response hypochlorite detection", Polyhedron, Vol. 148, pp. 76-80, 2018. https://doi.org/10.1016/j.poly.2018.04.001
- Y. Li, T. Xia, J. Zhang, Y. Cui, B. Li, Y. Yang, and G. Qian, "A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection", J. Solid State Chem., Vol. 275, pp. 38-42, 2019. https://doi.org/10.1016/j.jssc.2019.03.051
- Y. Li, W. Ye, Y. Cui, B. Li, Y. Yang, and G. Qian, "A metalorganic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid", J. Mol. Struct., Vol. 1209, p. 127986, 2020.
- P. Gayathri, Sakshi, and K. Ramanujam, "Redox Active Cobalt-Bipyridine Metal Organic Framework-Nafion Coated Carbon Nanotubes for Sensing Ascorbic Acid", J. Electrochem. Soc., Vol. 165, No. 13, pp. B603-B609, 2018. https://doi.org/10.1149/2.0661813jes
- M. Q. Wang, C. Ye, S. J. Bao, Y. Zhang, Y. N. Yu, and M. W. Xu, "Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids", Analyst, Vol. 141, No. 4, pp. 1279-1285, 2016. https://doi.org/10.1039/C5AN02441B
- S. M. Siddeeg, N. S. Alsaiari, M. A. Tahoon, and F. Ben Rebah, "The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid: Review", Int. J. Electrochem. Sci., Vol. 15, pp. 3327-3346, 2020. https://doi.org/10.20964/2020.04.13
- X. Du, Z. Zhang, C. Zhang, Y. Zhang, and Q. Chen, "Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection", J. Electroanal. Chem., Vol. 782, pp. 84-90, 2016. https://doi.org/10.1016/j.jelechem.2016.10.029
- N. Chauhan, J. Narang, R. Rawal, and C. S. Pundir, "A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite", Synth. Met., Vol. 161, No. 21-22, pp. 2427-2433, 2011. https://doi.org/10.1016/j.synthmet.2011.09.020
- Y. Liu, Z. Su, Y. Zhang, L. Chen, T. Gu, S. Huang, Y. Liu, L. Sun, Q. Xie, and S. Yao, "Amperometric determination of ascorbic acid using multiwalled carbon nanotube-thiolated polyaniline composite modified glassy carbon electrode", J. Electroanal. Chem., Vol. 709, pp. 19-25, 2013. https://doi.org/10.1016/j.jelechem.2013.09.027
- J.M. George, A. Antony, and B. Mathew, "Metal oxide nanoparticles in electrochemical sensing and biosensing: a review", Microchim. Acta, Vol. 185, No. 7, p. 358, 2018.
- F.S. Sangsefidi, M. Salavati-Niasari, S. Mazaheri, and M. Sabet, "Controlled green synthesis and characterization of CeO2 nanostructures as materials for the determination of ascorbic acid", J. Mol. Liq., Vol. 241, pp. 772-781, 2017. https://doi.org/10.1016/j.molliq.2017.06.078
- H. I. Chen and H. Y. Chang, "Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation", Solid State Commun., Vol. 133, No. 9, pp. 593-598, 2005. https://doi.org/10.1016/j.ssc.2004.12.020
- A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, "The utilization of ceria in industrial catalysis", Catal. Today, Vol. 50, No. 2, pp. 353-367, 1999. https://doi.org/10.1016/S0920-5861(98)00515-X
- A. M. Shahin, F. Grandjean, G. J. Long, and T. P. Schuman, "Cerium L III -Edge XAS Investigation of the Structure of Crystalline and Amorphous Cerium Oxides", Chem. Mater., Vol. 17, No. 2, pp. 315-321, 2005. https://doi.org/10.1021/cm0492437
- H. Karimi-Maleh, F. Tahernejad-Javazmi, M. Daryanavard, H. Hadadzadeh, A. A. Ensafi, and M. Abbasghorbani, "Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode", Electroanalysis, Vol. 26, No. 5, pp. 962-970, 2014. https://doi.org/10.1002/elan.201400013
- J. George, V. V. Halali, C. G. Sanjayan, V. Suvina, M. Sakar, and R. G. Balakrishna, "Perovskite nanomaterials as optical and electrochemical sensors", Inorg. Chem. Front., Vol. 7, No. 14, pp. 2702-2725, 2020. https://doi.org/10.1039/D0QI00306A
- E. A. R. Assirey, "Perovskite synthesis, properties and their related biochemical and industrial application", Saudi Pharm. J., Vol. 27, No. 6, pp. 817-829, 2019. https://doi.org/10.1016/j.jsps.2019.05.003
- N. F. Atta, E. H. El-Ads, A. Galal, and A. E. Galal, "Electrochemical Sensing Platform Based on Nano-Perovskite/ Glycine/Carbon Composite for Amlodipine and Ascorbic Acid Drugs", Electroanalysis, Vol. 31, No. 3, pp. 448-460, 2019. https://doi.org/10.1002/elan.201800577
- U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, "25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices", Adv. Mater., Vol. 26, No. 1, pp. 40-67, 2014. https://doi.org/10.1002/adma.201303265
- S. T. R. Naqvi, B. Shirinfar, D. Hussain, S. Majeed, M. N. Ashiq, Y. Aslam, and N. Ahmed, "Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by Bimetallic (Fe, Ni)-CNTs Composite Modified Electrode", Electroanalysis, Vol. 31, No. 5, pp. 851-857, 2019. https://doi.org/10.1002/elan.201800768
- N. G. Tsierkezos, U. Ritter, Y. N. Thaha, C. Downing, P. Szroeder, and P. Scharff, "Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid", Microchim. Acta, Vol. 183, No.1, pp. 35-47, 2016. https://doi.org/10.1007/s00604-015-1585-6
- H. J. Lee, E. Kim, J. Park, W. Song, K. S. An, Y. S. Kim, J. G. Yook, and J. Jung, "Radio-frequency characteristics of graphene monolayer via nitric acid doping", Carbon, Vol. 78, pp. 532-539.
- Y. Zhang, Y. Ji, Z. Wang, S. Liu, and T. Zhang, "Electrodeposition synthesis of reduced graphene oxide-carbon nanotube hybrids on indium tin oxide electrode for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid", RSC Adv., Vol. 5, No. 129, pp. 106307-106314, 2015. https://doi.org/10.1039/C5RA24727F
- S. Thiagarajan and S. M. Chen, "Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid", Talanta, Vol. 74, No. 2, pp. 212-222, 2007. https://doi.org/10.1016/j.talanta.2007.05.049
- S. Ramakrishnan, K. R. Pradeep, A. Raghul, R. Senthilkumar, M. Rangarajan, and N. K. Kothurkar, "One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid", Anal. Methods, Vol. 7, No. 2, pp. 779-786, 2015. https://doi.org/10.1039/C4AY02487G
- F. A. Harraz, M. Faisal, A. E. Al-Salami, A. M. El-Toni, A. A. Almadiy, S. A. Al-Sayari, and M. S. Al-Assiri, "Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid", Mater. Lett., Vol. 234, pp. 96-100, 2019. https://doi.org/10.1016/j.matlet.2018.09.076
- M. Y. Emran, M. A. Shenashen, A. A. Abdelwahab, H. Khalifa, M. Mekawy, N. Akhtar, M. Abdelmottaleb, and S. A. El-Safty, "Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples", J. Appl. Electrochem., Vol. 48, No.5, pp. 529-542, 2018. https://doi.org/10.1007/s10800-018-1175-5
- A. Gopalakrishnan, R. Sha, N. Vishnu, R. Kumar, and S. Badhulika, "Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices", Nano-Structures and Nano-Objects, Vol. 16, pp. 96-103, 2018. https://doi.org/10.1016/j.nanoso.2018.05.004
- Y. Zhang, P. Liu, S. Xie, M. Chen, M. Zhang, Z. Cai, R. Liang, Y. Zhang, and F. Cheng, "A novel electrochemical ascorbic acid sensor based on branch-trunk Ag hierarchical nanostructures", J. Electroanal. Chem., Vol. 818, pp. 250-256, 2018. https://doi.org/10.1016/j.jelechem.2018.04.007
- Y. Yang, A. Jo, Y. Lee, and C. Lee, "Electrodeposited nanoporous ruthenium oxide for simultaneous quantification of ascorbic acid and uric acid using chronoamperometry at two different potentials", Sens. Actuators B Chem., Vol. 255, pp. 316-324, 2018. https://doi.org/10.1016/j.snb.2017.08.089
- D. K. Yadav, R. Gupta, V. Ganesan, and P. K. Sonkar, "Individual and simultaneous voltammetric determination of ascorbic acid, uric acid and folic acid by using a glassy carbon electrode modified with gold nanoparticles linked to bentonite via cysteine groups", Microchim. Acta, Vol. 184, No. 7, pp. 1951-1957, 2017. https://doi.org/10.1007/s00604-017-2186-3
- J. Raveendran, R. G. Krishnan, B. G. Nair, and T. G. Satheesh Babu, "Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2 nanorods", Microchim. Acta, Vol. 184, No. 9, pp. 3573-3579, 2017. https://doi.org/10.1007/s00604-017-2391-0
- M. A. Alonso-Lomillo, O. Dominguez-Renedo, A. Saldana-Botin, and M. J. Arcos-Martinez, "Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles", Talanta, Vol. 174, pp. 733-737, 2017. https://doi.org/10.1016/j.talanta.2017.07.015
- L. Zhang, J. Feng, K. C. Chou, L. Su, and X. Hou, "Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride", J. Electroanal. Chem., Vol. 803, pp. 11-18, 2017. https://doi.org/10.1016/j.jelechem.2017.09.006
- Y. G. Lee, B. X. Liao, and Y. C. Weng, "Ruthenium oxide modified nickel electrode for ascorbic acid detection", Chemosphere, Vol. 173, pp. 512-519, 2017. https://doi.org/10.1016/j.chemosphere.2017.01.086