DOI QR코드

DOI QR Code

Review on CNT-based Electrode Materials for Electrochemical Sensing of Ascorbic Acid

  • P Mary Rajaitha (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Runia Jana (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Sugato Hajra (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Swati Panda (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Hoe Joon Kim (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2023.03.17
  • Accepted : 2023.04.05
  • Published : 2023.05.31

Abstract

Ascorbic acid plays a crucial role in the regulation of neurotransmitters and enzymes in the central nervous system. Maintaining an optimal level of ascorbic acid, which is between 0.6-2 mg/dL, is vital for preventing oxidative stress and associated health conditions, such as cancer, diabetes, and liver disease. Therefore, the detection of ascorbic acid is of the utmost importance. Electrochemical sensing has gained significant attention among the various detection methods, owing to its simplicity, speed, affordability, high selectivity, and real-time analysis capabilities. However, conventional electrodes have poor signal response, which has led to the development of modified electrodes with better signal response and selectivity. Carbon nanotubes (CNTs) and their composites have emerged as promising materials for the electrochemical detection of ascorbic acid. CNTs possess unique mechanical, electrical, and chemical properties that depend on their structure, and their large surface area and excellent electron transport properties make them ideal candidates for electrochemical sensing. Recently, various CNT composites with different materials and nanoparticles have been studied to enhance the electrochemical detection of ascorbic acid. Therefore, this review aims to highlight the significance of CNTs and their composites for improving the sensitivity and selectivity of ascorbic acid detection. Specifically, it focuses on the use of CNTs and their composites in electrochemical sensing to revolutionize the detection of ascorbic acid and contribute to the prevention of oxidative stress-related health conditions. The potential benefits of this technology make it a promising area for future research and development.

Keywords

Acknowledgement

This study was supported by the Daegu Gyeongbuk Institute of Science and Technology (DGIST) R&D Program (22-SENS-01) funded by the Ministry of Science and ICT of Korea.

References

  1. B. Mittu, Z. R. Bhat, A. Chauhan, J. Kour, A. Behera, and M. Kaur, "Ascorbic Acid", Elsevier Inc., pp. 289-302, 2021.
  2. T. Dodevska, D. Hadzhiev, and I. Shterev, "A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications", Micromachines, Vol. 14, No. 1, p. 41, 2022.
  3. A.M. Pisoschi, A. Pop, A.I. Serban, and C. Fafaneata, "Electrochemical methods for ascorbic acid determination", Electrochim. Acta, Vol. 121, pp. 443-460, 2014. https://doi.org/10.1016/j.electacta.2013.12.127
  4. K. Dhara, and R.M. Debiprosad, "Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection", Anal. Biochem., Vol. 586, p. 113415, 2019.
  5. A. Manjari Padhan, P. Mary Rajaitha, S. Nayak, S. Hajra, M. Sahu, Z. Jaglicic, P. Kozelj, and H.J. Kim, "Synthesis and application of mixed-spinel magnesioferrite: structural, vibrational, magnetic, and electrochemical sensing properties", Mater. Chem. Front., Vol. 7, No. 1, pp. 72-84, 2022. https://doi.org/10.1039/D2QM00628F
  6. S. Chaturvedi, S. Khan, R.K. Bhunia, K. Kaur, and S. Tiwari, "Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health", Physiol. Mol. Biol. Plants, Vol. 28, No. 4, pp. 871-884, 2022. https://doi.org/10.1007/s12298-022-01172-w
  7. C. Kagathara, K. Odedra, N. Vadia, and J. Iran, "Development of HPTLC method for the simultaneous estimation of quercetin, curcumin, and ascorbic acid in herbal formulations", Chem. Soc., Vol. 19, No. 10, pp. 4129-4138, 2022.
  8. P.C. Motsaathebe, and O.E. Fayemi, "Electrochemical Detection of Ascorbic Acid in Oranges at MWCNT-AONP Nanocomposite Fabricated Electrode", Nanomaterials, Vol. 12, No. 4, pp. 1-11, 2022. https://doi.org/10.3390/nano12040645
  9. P. Wu, Y. Huang, X. Zhao, D. Lin, L. Xie, Z. Li, Z. Zhu, H. Zhao, and M. Lan, "MnFe2O4/MoS2 nanocomposite as Oxidase-like for electrochemical simultaneous detection of ascorbic acid, dopamine and uric acid", Microchem. J., Vol. 181, p. 107780, 2022.
  10. F.O. Silva, "Total ascorbic acid determination in fresh squeezed orange juice by gas chromatography", Food Control, Vol. 16, No. 1, pp. 55-58, 2005. https://doi.org/10.1016/j.foodcont.2003.11.007
  11. H. Yang, Z. Liu, C. Liu, and Y. Zhang, "FeMoO4nanospheres-based nanozymatic colorimetry for rapid and sensitive pyrophosphate detection", J. Mater. Chem. B, Vol. 10, No. 2, pp. 321-327, 2022. https://doi.org/10.1039/D1TB01892B
  12. F. Chen, B. Fang, and S. Wang, "A Fast and Validated HPLC Method for Simultaneous Determination of Dopamine, Dobutamine, Phentolamine, Furosemide, and Aminophylline in Infusion Samples and Injection Formulations", J. Anal. Methods Chem., Vol. 2021, No. d, pp. 1-9, 2021.
  13. A. Versari, A. Mattioli, G. P. Parpinello, and S. Galassi, "Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis", Food Control, Vol. 15, No. 5, pp. 355-358, 2004. https://doi.org/10.1016/S0956-7135(03)00097-5
  14. A. Pandikumar, G. T. Soon How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, "Graphene and its nanocomposite material based electrochemical sensor platform for dopamine", RSC Adv., Vol. 4, No. 108, pp. 63296-63323, 2014. https://doi.org/10.1039/C4RA13777A
  15. P. M. Rajaitha, S. Hajra, A. M. Padhan, S. Panda, M. Sahu, and H. J. Kim, "An electrochemical sensor based on multiferroic NdFeO3 particles modified electrode for the detection of H2O2", J. Alloys Compd., Vol. 915, p. 165402, 2022.
  16. L. Liu, W. Ma, and Z. Zhang, "Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications", Small, Vol. 7, No. 11, pp. 1504-1520, 2011. https://doi.org/10.1002/smll.201002198
  17. C. B. Jacobs, M. J. Peairs, and B. J. Venton, "Review: Carbon nanotube based electrochemical sensors for biomolecules", Anal. Chim. Acta, Vol. 662, No. 2, pp. 105-127, 2010. https://doi.org/10.1016/j.aca.2010.01.009
  18. A. J. Saleh Ahammad, J. J. Lee, and M. A. Rahman, "Electrochemical sensors based on carbon nanotubes", Sensors, Vol. 9, No. 4, pp. 2289-2319, 2009. https://doi.org/10.3390/s90402289
  19. P. Yanez-Sedeno, J. M. Pingarron, J. Riu, and F. X. Rius, "Electrochemical sensing based on carbon nanotubes", TrAC - Trends Anal. Chem., Vol. 29, No. 9, pp. 939-953, 2010. https://doi.org/10.1016/j.trac.2010.06.006
  20. u. Anik, S. Timur, and Z. Dursun, "Metal organic frameworks in electrochemical and optical sensing platforms: a review", Microchim. Acta, Vol. 186, No. 3, pp. 18-24, 2019. https://doi.org/10.1007/s00604-018-3135-5
  21. J. M. Goncalves, P. R. Martins, D. P. Rocha, T. A. Matias, M. S. S. Juliao, R. A. A. Munoz, and L. Angnes, "Recent trends and perspectives in electrochemical sensors based on MOF-derived materials", J. Mater. Chem. C, Vol. 9, No. 28, pp. 8718-8745, 2021. https://doi.org/10.1039/D1TC02025K
  22. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, and S. K. Ghosh, "Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications", Chem. Soc. Rev., Vol. 46, No. 11, pp. 3242-3285, 2017. https://doi.org/10.1039/C6CS00930A
  23. Z. Liu, W. He, and Z. Guo, "Metal coordination in photoluminescent sensing", Chem. Soc. Rev., Vol. 42, No. 4, pp. 1568-1600, 2013. https://doi.org/10.1039/c2cs35363f
  24. L. Xiao, R. Xu, Q. Yuan, and F. Wang, "Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon", Talanta, Vol. 167, pp. 39-43, 2017. https://doi.org/10.1016/j.talanta.2017.01.078
  25. W. Ling, G. Liew, Y. Li, Y. Hao, H. Pan, H. Wang, B. Ning, H. Xu, and X. Huang, "Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks", Adv. Mater., Vol. 30, No. 23, pp. 1-9, 2018. https://doi.org/10.1002/adma.201800917
  26. Y. Li, K. Jiang, J. Zhang, T. Xia, Y. Cui, Y. Yang, and G. Qian, "A turn-on fluorescence probe based on post-modified metal-organic frameworks for highly selective and fast-response hypochlorite detection", Polyhedron, Vol. 148, pp. 76-80, 2018. https://doi.org/10.1016/j.poly.2018.04.001
  27. Y. Li, T. Xia, J. Zhang, Y. Cui, B. Li, Y. Yang, and G. Qian, "A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection", J. Solid State Chem., Vol. 275, pp. 38-42, 2019. https://doi.org/10.1016/j.jssc.2019.03.051
  28. Y. Li, W. Ye, Y. Cui, B. Li, Y. Yang, and G. Qian, "A metalorganic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid", J. Mol. Struct., Vol. 1209, p. 127986, 2020.
  29. P. Gayathri, Sakshi, and K. Ramanujam, "Redox Active Cobalt-Bipyridine Metal Organic Framework-Nafion Coated Carbon Nanotubes for Sensing Ascorbic Acid", J. Electrochem. Soc., Vol. 165, No. 13, pp. B603-B609, 2018. https://doi.org/10.1149/2.0661813jes
  30. M. Q. Wang, C. Ye, S. J. Bao, Y. Zhang, Y. N. Yu, and M. W. Xu, "Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids", Analyst, Vol. 141, No. 4, pp. 1279-1285, 2016. https://doi.org/10.1039/C5AN02441B
  31. S. M. Siddeeg, N. S. Alsaiari, M. A. Tahoon, and F. Ben Rebah, "The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid: Review", Int. J. Electrochem. Sci., Vol. 15, pp. 3327-3346, 2020. https://doi.org/10.20964/2020.04.13
  32. X. Du, Z. Zhang, C. Zhang, Y. Zhang, and Q. Chen, "Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection", J. Electroanal. Chem., Vol. 782, pp. 84-90, 2016. https://doi.org/10.1016/j.jelechem.2016.10.029
  33. N. Chauhan, J. Narang, R. Rawal, and C. S. Pundir, "A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite", Synth. Met., Vol. 161, No. 21-22, pp. 2427-2433, 2011. https://doi.org/10.1016/j.synthmet.2011.09.020
  34. Y. Liu, Z. Su, Y. Zhang, L. Chen, T. Gu, S. Huang, Y. Liu, L. Sun, Q. Xie, and S. Yao, "Amperometric determination of ascorbic acid using multiwalled carbon nanotube-thiolated polyaniline composite modified glassy carbon electrode", J. Electroanal. Chem., Vol. 709, pp. 19-25, 2013. https://doi.org/10.1016/j.jelechem.2013.09.027
  35. J.M. George, A. Antony, and B. Mathew, "Metal oxide nanoparticles in electrochemical sensing and biosensing: a review", Microchim. Acta, Vol. 185, No. 7, p. 358, 2018.
  36. F.S. Sangsefidi, M. Salavati-Niasari, S. Mazaheri, and M. Sabet, "Controlled green synthesis and characterization of CeO2 nanostructures as materials for the determination of ascorbic acid", J. Mol. Liq., Vol. 241, pp. 772-781, 2017. https://doi.org/10.1016/j.molliq.2017.06.078
  37. H. I. Chen and H. Y. Chang, "Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation", Solid State Commun., Vol. 133, No. 9, pp. 593-598, 2005. https://doi.org/10.1016/j.ssc.2004.12.020
  38. A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, "The utilization of ceria in industrial catalysis", Catal. Today, Vol. 50, No. 2, pp. 353-367, 1999. https://doi.org/10.1016/S0920-5861(98)00515-X
  39. A. M. Shahin, F. Grandjean, G. J. Long, and T. P. Schuman, "Cerium L III -Edge XAS Investigation of the Structure of Crystalline and Amorphous Cerium Oxides", Chem. Mater., Vol. 17, No. 2, pp. 315-321, 2005. https://doi.org/10.1021/cm0492437
  40. H. Karimi-Maleh, F. Tahernejad-Javazmi, M. Daryanavard, H. Hadadzadeh, A. A. Ensafi, and M. Abbasghorbani, "Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode", Electroanalysis, Vol. 26, No. 5, pp. 962-970, 2014. https://doi.org/10.1002/elan.201400013
  41. J. George, V. V. Halali, C. G. Sanjayan, V. Suvina, M. Sakar, and R. G. Balakrishna, "Perovskite nanomaterials as optical and electrochemical sensors", Inorg. Chem. Front., Vol. 7, No. 14, pp. 2702-2725, 2020. https://doi.org/10.1039/D0QI00306A
  42. E. A. R. Assirey, "Perovskite synthesis, properties and their related biochemical and industrial application", Saudi Pharm. J., Vol. 27, No. 6, pp. 817-829, 2019. https://doi.org/10.1016/j.jsps.2019.05.003
  43. N. F. Atta, E. H. El-Ads, A. Galal, and A. E. Galal, "Electrochemical Sensing Platform Based on Nano-Perovskite/ Glycine/Carbon Composite for Amlodipine and Ascorbic Acid Drugs", Electroanalysis, Vol. 31, No. 3, pp. 448-460, 2019. https://doi.org/10.1002/elan.201800577
  44. U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, "25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices", Adv. Mater., Vol. 26, No. 1, pp. 40-67, 2014. https://doi.org/10.1002/adma.201303265
  45. S. T. R. Naqvi, B. Shirinfar, D. Hussain, S. Majeed, M. N. Ashiq, Y. Aslam, and N. Ahmed, "Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by Bimetallic (Fe, Ni)-CNTs Composite Modified Electrode", Electroanalysis, Vol. 31, No. 5, pp. 851-857, 2019. https://doi.org/10.1002/elan.201800768
  46. N. G. Tsierkezos, U. Ritter, Y. N. Thaha, C. Downing, P. Szroeder, and P. Scharff, "Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid", Microchim. Acta, Vol. 183, No.1, pp. 35-47, 2016. https://doi.org/10.1007/s00604-015-1585-6
  47. H. J. Lee, E. Kim, J. Park, W. Song, K. S. An, Y. S. Kim, J. G. Yook, and J. Jung, "Radio-frequency characteristics of graphene monolayer via nitric acid doping", Carbon, Vol. 78, pp. 532-539.
  48. Y. Zhang, Y. Ji, Z. Wang, S. Liu, and T. Zhang, "Electrodeposition synthesis of reduced graphene oxide-carbon nanotube hybrids on indium tin oxide electrode for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid", RSC Adv., Vol. 5, No. 129, pp. 106307-106314, 2015. https://doi.org/10.1039/C5RA24727F
  49. S. Thiagarajan and S. M. Chen, "Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid", Talanta, Vol. 74, No. 2, pp. 212-222, 2007. https://doi.org/10.1016/j.talanta.2007.05.049
  50. S. Ramakrishnan, K. R. Pradeep, A. Raghul, R. Senthilkumar, M. Rangarajan, and N. K. Kothurkar, "One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid", Anal. Methods, Vol. 7, No. 2, pp. 779-786, 2015. https://doi.org/10.1039/C4AY02487G
  51. F. A. Harraz, M. Faisal, A. E. Al-Salami, A. M. El-Toni, A. A. Almadiy, S. A. Al-Sayari, and M. S. Al-Assiri, "Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid", Mater. Lett., Vol. 234, pp. 96-100, 2019. https://doi.org/10.1016/j.matlet.2018.09.076
  52. M. Y. Emran, M. A. Shenashen, A. A. Abdelwahab, H. Khalifa, M. Mekawy, N. Akhtar, M. Abdelmottaleb, and S. A. El-Safty, "Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples", J. Appl. Electrochem., Vol. 48, No.5, pp. 529-542, 2018. https://doi.org/10.1007/s10800-018-1175-5
  53. A. Gopalakrishnan, R. Sha, N. Vishnu, R. Kumar, and S. Badhulika, "Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices", Nano-Structures and Nano-Objects, Vol. 16, pp. 96-103, 2018. https://doi.org/10.1016/j.nanoso.2018.05.004
  54. Y. Zhang, P. Liu, S. Xie, M. Chen, M. Zhang, Z. Cai, R. Liang, Y. Zhang, and F. Cheng, "A novel electrochemical ascorbic acid sensor based on branch-trunk Ag hierarchical nanostructures", J. Electroanal. Chem., Vol. 818, pp. 250-256, 2018. https://doi.org/10.1016/j.jelechem.2018.04.007
  55. Y. Yang, A. Jo, Y. Lee, and C. Lee, "Electrodeposited nanoporous ruthenium oxide for simultaneous quantification of ascorbic acid and uric acid using chronoamperometry at two different potentials", Sens. Actuators B Chem., Vol. 255, pp. 316-324, 2018. https://doi.org/10.1016/j.snb.2017.08.089
  56. D. K. Yadav, R. Gupta, V. Ganesan, and P. K. Sonkar, "Individual and simultaneous voltammetric determination of ascorbic acid, uric acid and folic acid by using a glassy carbon electrode modified with gold nanoparticles linked to bentonite via cysteine groups", Microchim. Acta, Vol. 184, No. 7, pp. 1951-1957, 2017. https://doi.org/10.1007/s00604-017-2186-3
  57. J. Raveendran, R. G. Krishnan, B. G. Nair, and T. G. Satheesh Babu, "Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2 nanorods", Microchim. Acta, Vol. 184, No. 9, pp. 3573-3579, 2017. https://doi.org/10.1007/s00604-017-2391-0
  58. M. A. Alonso-Lomillo, O. Dominguez-Renedo, A. Saldana-Botin, and M. J. Arcos-Martinez, "Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles", Talanta, Vol. 174, pp. 733-737, 2017. https://doi.org/10.1016/j.talanta.2017.07.015
  59. L. Zhang, J. Feng, K. C. Chou, L. Su, and X. Hou, "Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride", J. Electroanal. Chem., Vol. 803, pp. 11-18, 2017. https://doi.org/10.1016/j.jelechem.2017.09.006
  60. Y. G. Lee, B. X. Liao, and Y. C. Weng, "Ruthenium oxide modified nickel electrode for ascorbic acid detection", Chemosphere, Vol. 173, pp. 512-519, 2017. https://doi.org/10.1016/j.chemosphere.2017.01.086