DOI QR코드

DOI QR Code

X-ray Image Correction Model for Enhanced Foreign Body Detection in Metals

금속 내부의 이물질 검출 향상을 위한 X-ray 영상 보정 모델

  • Kim, Won (Division of IT Convergence, Woosong University)
  • 김원 (우송대학교 IT융합학부)
  • Received : 2019.09.14
  • Accepted : 2019.10.20
  • Published : 2019.10.28

Abstract

X-rays with shorter wavelengths than ultraviolet light have very good penetration power. It is convergence in industrial and medical fields has been used a lot. n particular, in the industrial field, various researches have been conducted on the detection of foregin body inside metal that can occur in the production process of products such as metal using x-ray, a non-destructive inspection device. Detectors are becoming increasingly popular for the popularization of DR (Digital Radiography) photography methods that digitally acquire X-ray video images. However, there are cases where foreign body detection is impossible depending on the sensor noise and sensitivity inside the detector. When producing a metal product, since the defective rate of the produced product may increase due to contamination of the foreign body, accurate detection is necessary. In this paper, we provide a correction model for X-ray images acquired in order to improve the efficiency of defect detection such as foreign body inside metal. When applied to defect detection in the production process of metal products through the proposed model, it is expected that the detection of product defects can be processed accurately and quickly.

자외선보다 파장이 짧은 X-선은 투과력이 매우 좋아 산업 분야 및 의료분야에 융합되어 많이 사용되고 있다. 특히 산업분야에서는 비파괴 검사 장비인 x-ray를 이용하여 금속과 같은 제품의 생산 과정에서 발생할 수 있는 금속 내부의 이물질에 검출에 대한 연구가 다양하게 이루어지고 있는 실정이다. X-ray 영상 이미지를 디지털 방식으로 획득하는 DR(Digital Radiography) 방사선 촬영 방식의 확산으로 디텍터의 사용이 활발해지고 있으나 내부의 센서 잡음 및 감도에 따라 이물질 검출이 불가능한 경우도 발생하고 있다. 금속 제품을 생산할 경우 이물질의 혼입으로 생산 제품의 불량률이 높아질 수 있기에 정확한 검출이 필요하다. 이에 본 논문에서는 금속 내부의 이물질과 같은 결함 검출의 효율을 향상시키기 위하여 획득한 X-ray 이미지의 보정 모델을 제안한다. 제안 모델을 통하여 금속 제품 생산 공정의 불량 검출에 적용하면 제품 결함의 검출을 정확하고 신속하게 처리할 수 있을 것으로 기대된다.

Keywords

References

  1. K. I. Lee, J. S. Jang & T. R. Lee. (2016). Using the X-ray Image, Augmented Reality based electrocardiogram measurement system Development. Journal of Digital Convergence, 14(9), 331-339. DOI : 10.14400/JDC.2016.14.9.331
  2. S. H. Kim. (2015). A Convergence Study on Evaluation of Usefulness of Copper Additional Filter in the Digital Radiography System. Journal of Digital Convergence, 13(9), 351-359. DOI : 10.14400/JDC.2015.13.9.351
  3. J. C. Shin & K. I. Kim. (2018). The necessity of Smart Factory's Standards and Certification System Based on Grounded theory. Journal of Convergence for Information Technology, 8(2), 203-208. DOI : 10.22156/CS4SMB.2018.8.2.203
  4. M. K. Park, H. J. Moon & D. H. Lee. (2015). The development of product inspection X-ray DR image processing system using intensifying screen. Journal of the Korea Institute of Information and Communication Engineering, 19(7), 1737-1742. DOI : 10.6109/jkiice.2015.19.7.1737
  5. I. S. Cho, J. I. Kim & C. H. Lim. (2010). In-situ X-ray Observation of Shrinkage Defect of the Aluminum Alloy Castings. Journal of Korea Foundry Society, 30(5), 174-178.
  6. The Korean society for Nondestructive testing. (2004). Dictionary of Nondestruction Testing. Seoul : Sejinbook. 128.
  7. H. R. Ji & H. Hong. (2013). Automatic Detection of Foreign Body through Template Matching in Industrial CT Volume Data. Journal of Korea Multimedia Society, 16(2), 1376-1384. DOI : 10.9717/kmms.2013.16.12.1376
  8. H. N. Cho, G. R. Park, D. H. Kim, J. W. Kim & H. Y. Lee. (2019). A Study on Image Correction System to Detect Defects in Casting. Proceedings of Conference on Konoledge Information Technology and Systems, 185-188.
  9. D. S. Kim & E. Kim. (2016). Noise power spectrum of the fixed pattern noise in digital radiography detectors. Medical Physics, 43(6), 2765-2773. DOI : 10.1118/1.4948691
  10. W. Zhao, D. C. Hunt, KTanioka & J. A. Rowlands, (2005). Amorphous selenium flat panel detectors for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 549(1-3), 205-209. DOI : 10.1016/j.nima.2005.04.053
  11. J. Y. Park, J. K. Park, S. S. Kang, C. W. Moon, H. W. Lee & S. H. Nam. (2003). Comparison Study of the Modulation Transfer Function of a Prototype a-Se based Flat Panel Detector with Conventional Speed Class 400 Film/screen System. Journal of the Institute of Electronics Engineers of Korea SC, 40(3), 163-171.
  12. B. K. Cha, D. H. Lee, B. H. Kim, G. H. Yoon, S. C. Jeon & Y. Huh. (2010). Research and Development of Scintillating Materials For Digital 3D Fluoroscopy X-ray Sensors. Conference of the Institute of Electronics and Information Engineers, 33(1), 2025-2027.
  13. J. W. Gil, J. H. Park, S. H. Bae, H. J. Hwang & Y. G. Kim. (2014). The solution to the limitation of the conventional digital x-ray system and its feasibility test. Journal of digital convergence, 12(12), 371-379. DOI : 10.14400/JDC.2014.12.12.371
  14. M. C. Pan & A. H. Lettington, (1998). Smoothing images by a probability filter. IEEE International Joint Symposia on Intelligence and Systems (Cat. No. 98EX174), 343-346.
  15. X, Long & N. H. Kim. (2013). An Improved Weighted Filter for AWGN Removal. Journal of the Korea Institute of Information and Communication Engineering, 17(5), 1227-1232. DOI : 10.6109/jkiice.2013.17.5.1227