• Title/Summary/Keyword: Sensor Management

Search Result 2,008, Processing Time 0.027 seconds

Space-Efficient Compressed-Column Management for IoT Collection Servers (IoT 수집 서버를 위한 공간효율적 압축-칼럼 관리)

  • Byun, Siwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.1
    • /
    • pp.179-187
    • /
    • 2019
  • With the recent development of small computing devices, IoT sensor network can be widely deployed and is now readily available with sensing, calculation and communi-cation functions at low cost. Sensor data management is a major component of the Internet of Things environment. The huge volume of data produced and transmitted from sensing devices can provide a lot of useful information but is often considered the next big data for businesses. New column-wise compression technology is mounted to the large data server because of its superior space efficiency. Since sensor nodes have narrow bandwidth and fault-prone wireless channels, sensor-based storage systems are subject to incomplete data services. In this study, we will bring forth a short overview through providing an analysis on IoT sensor networks, and will propose a new storage management scheme for IoT data. Our management scheme is based on RAID storage model using column-wise segmentation and compression to improve space efficiency without sacrificing I/O performance. We conclude that proposed storage control scheme outperforms the previous RAID control by computer performance simulation.

Energy Harvesting System for Underground Facility Sensor (지하시설물용 센서 네트워크를 위한 에너지 획득 장치)

  • Kwon, Young-Min;Lee, Hyung-Su
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

An Efficient Memory Allocation Scheme for Space Constrained Sensor Operating Systems (공간 제약적인 센서 운영체제를 위한 효율적인 메모리 할당 기법)

  • Yi Sang-Ho;Min Hong;Heo Jun-Youg;Cho Yoo-Kun;Hong Ji-Man
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.626-633
    • /
    • 2006
  • The wireless sensor networks are sensing, computing and communication infrastructures that allow us to monitor, instrument, observe, and respond to phenomena in the harsh environment. Sensor operating systems that run on tiny sensor nodes are the key to the performance of the distributed computing environment for the wireless sensor networks. Therefore, sensor operating systems should be able to operate efficiently in terms of energy consumption and resource management. In this paper, we present an efficient memory allocation scheme to improve the time and space efficiency of memory management for the sensor operating systems. Our experimental results show that the proposed scheme performs efficiently in both time and space compared with existing memory allocation mechanisms.

A Optimal Method of Sensor Node Deployment for the Urban Ground Facilities Management (도시지상시설물 관리를 위한 최적 센서노드 배치 방법)

  • Kang, Jin-A;Nam, Sang-Kwan;Kwon, Hyuk-Jong;OH, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.158-168
    • /
    • 2009
  • As nation and society progresses, urban ground facilities and their management system get more complicated and the cost and effort to control the system efficiently grows exponentially. This study suggests to the deployment method of a sensor node by Wireless Sensor Network for controling the Urban Ground Facilities of National Facilities. First, we achieve the management facilities and method using the first analysis and then make the coverage of sensing and then set up the Sensor Node in Urban Ground Facilities. Second, we propose the solution way of repetition by the second analysis. And, we embody the GIS program by Digital Map and this method, we improve the reality by overlapping an aerial photo. Also we make an experience on the sensor node allocation using making program. we can remove the repetition sensor node about 50%, and we can confirm that the sensor nodes are evenly distributed on the road.

  • PDF

Chronic Disease Management using Smart Mobile Device (스마트 모바일 기기를 이용한 만성질환 관리)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2014
  • According to the recent trends in the growing elderly population, the chronically ill have increased. Thus the importance of the health care issues for them has emerged. In this paper, we want to implement a chronic disease management system using smart mobile devices. Proposed chronic disease management system is consisted of the biometric sensor, smart mobile devices, the patient management server, patient management DB, and patient symptoms analysis agent. The biometric sensor detects a biological information. Smart mobile devices receive the patient information from the sensor and transmit the information to the patient management server. The patient management server, patient management DB, and patient symptoms agent analysis agent analyze to process data delivered through a wireless communication network. Bio-signals includes modules of ECG, blood pressure, blood sugar and PPG. We are able to determine the current health status by monitoring measured biometric data through chronically ill health management system. We will focus on the individual service to be appropriate for a patient group in a mobile environment.

Optimal Packet Length with Energy Efficiency for Sensor Networks (센서 네트워크상에서 에너지 효율성을 고려한 최적 패킷 길이)

  • Choi Sung-Hye;Joe InWhee
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.111-114
    • /
    • 2004
  • Sensor networks are deployed with a limited energy source. Thus, energy efficient design can be challenging. This paper has been studied optimal packet length with energy efficiency for sensor networks. And using Power Management can not improve energy efficiency. Power Management is turning off transceiver when transceiver is idle statue. We show that BCH code for error control can improve energy efficiency better than Convolutional code.

  • PDF

Design and Implementation of facility Management System based Ubiquitous (u-기반 시설물 관리 시스템 설계 및 구현)

  • Kim, Jung Jae;Park, Chan Kil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • The USN is important in technique, unmanned observation using wireless network camera, detection technique that use intrusion detection sensor. But these encrypted data transmission and processing technique through sensor network, method of the staff's location recognition and arrangement aren't serviced still as a integrated system in facility security industry. This paper proposed that improve facility management, the staff present recognition and system efficiency using RFID, USN and wireless camera.

Cost-Effective and Distributed Mobility Management Scheme in Sensor-Based PMIPv6 Networks with SPIG Support (센서기반 프록시 모바일 IPv6 네트워크에서 SPIG를 이용한 비용효과적인 분산 이동성관리 기법)

  • Jang, Soon-Ho;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.211-221
    • /
    • 2012
  • The development of wireless sensor networks (WSNs) is progressed slowly due to limited resources, but it is in progress to the development of the latest IP-based IP-WSN by the development of hardware and power management technology. IPv6 over Low power WPAN (6LoWPAN) is capable of IPv6-built low-power devices. In these IP-based WSNs, existing IP-based techniques which was impossible in WSNs becomes possible. 6LoWPAN is based on the IEEE 802.15.4 sensor networks and is a IPv6-supported technology. Host-based mobility management scheme in IP-WSNs are not suitable due to the additional signaling, network-based mobility management scheme is more suitable. In this paper, we propose an enhanced PMIPv6-based route optimization scheme which consider multi-6LoWPAN network environments. All SLMA (Sensor Local Mobility Anchor) of the 6LoWPAN domain are connected with the SPIG (Sensor Proxy Internetworking Gateway) and performs distributed mobility control for the 6LoWPAN-based inter-domain operations. All information of SLMA in 6LoWPAN domain is maintained by SMAG (Sensor Mobile Access Gateway), and then is performed the route optimization quickly. The status information of the route optimization from SPIG is stored to SLMA and it is supported without additional signaling.

Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks (의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구)

  • Seo, Jae-Won;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.285-298
    • /
    • 2009
  • According to the development of ubiquitous technologies, sensor networks is used in various area. In particular, medical field is one of the significant application areas using sensor networks, and recently it has come to be more important according to standardization of the body sensor networks technology. There are special characteristics of their own for medical sensor networks, which are different from the one of sensor networks for general application or environment. In this paper, we propose a hierarchical medical sensor networks structure considering own properties of medical applications, and also introduce transmission mechanism based on hierarchical structure. Our mechanism uses the priority and threshold value for medical sensor nodes considering patient's needs and health condition. Through this way Cluster head can transmit emergency data to the Base station rapidly. We also present the new key establishment mechanism based on key management mechanism which is proposed by L. Eschenauer and V. Gligor for our proposed structure and transmission mechanism. We use key provisioning for emergency nodes that have high priority based on patients' health condition. This mechanism guarantees the emergency nodes to establish the key and transmit the urgent message to the new cluster head more rapidly through preparing key establishment with key provisioning. We analyze the efficiency of our mechanism through comparing the amount of traffic and energy consumption with analysis and simulation with QualNet simulator. We also implemented our key management mechanism on TmoteSKY sensor board using TinyOS 2.0 and through this experiments we proved that the new mechanism could be actually utilized in network design.

Implementation of Intelligent Campus Vehicle Management System Using Wireless Sensor Nodes (무선 센서노드를 이용한 지능형 캠퍼스 차량 관리 시스템 구현)

  • Choi, Jun-Young;Yang, Hyun-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • Recent advancements of wireless communication technology and miniaturization technique enables the implementation of wireless sensor network(WSN) using smart sensors. In addition, the research on the application of WSN to various fields of our daily life is performing briskly[1]. In this paper, we described the implementation of campus vehicle management system using wireless sensor nodes as an application of WSN. To do this, we have investigated the functions of commercial wireless sensor nodes such as transmission power control and node identification. We also proposed the architecture and operation procedure for the real system implementation.

  • PDF