• Title/Summary/Keyword: Sensor Driver System

Search Result 251, Processing Time 0.026 seconds

The Implementation of User Image Recognition based on Embedded Linux (임베디드 리눅스 기반의 사용자 영상인식시스템 구현)

  • Park, Chang-Hee;Kang, Jin-Suk;Ko, Suk-Man;Kim, Jang-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2007
  • In this paper, we propose a system that the Linux is ported in embedded system with peripheral devices of CIS(CMOS Image Sensor) and GPS module. The system acquires GGA sentence from GPS module by recognizing camera and GPS is used module in Linux kernel. And then the received location information is used to include still image acquired through CIS According to this paper, We compose hardware for embedded system, attach board (including camera), port Linux BootLoader and Kernel. And. then we realize that it insert kernel in CIS control device driver and GPS module device driver.

Development of a Dipstick Gage Type Small Engine oil Deterioration Detection Sensor (딥스틱게이지형 소형 엔진열화감지센서 개발)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • A small engine-oil-deterioration detection sensor was developed and installed at the tip of a dipstick gage. The sensor part was manufactured using printed circuit board (PCB) manufacturing technology. A set of sensor covers was installed in order to protect the sensor and realize good signal stability. The small engine-oil-deterioration detection sensor system comprised a dual sensor having etched copper electrodes coated with gold and ceramic, a flexible PCB (FPCB) acting as electric wire, and a dummy PCB with only a lock connector. The sensor can easily be installed by insertion through the guide tube of a dipstick gage. Thus, a driver can easily handle it without further installation equipment. The sensor can determine the level of deterioration in the engine oil by estimating the corresponding dielectric constant of the engine oil.

Vision-sensor-based Drivable Area Detection Technique for Environments with Changes in Road Elevation and Vegetation (도로의 높낮이 변화와 초목이 존재하는 환경에서의 비전 센서 기반)

  • Lee, Sangjae;Hyun, Jongkil;Kwon, Yeon Soo;Shim, Jae Hoon;Moon, Byungin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.94-100
    • /
    • 2019
  • Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.

Design of Vehicle Safety System based on Multi-sensor for Driver's Safety to Fog (안개발생시 운전자의 안전을 위한 멀티센서 기반의 차량 안전 시스템 설계)

  • Park, Gun-Young;Jeon, Min-Ho;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.837-839
    • /
    • 2012
  • When the for occurred, the driver does not get the vision is has difficult on driving. In this case, the probability of occurrence of accidents are very high level. To reduce accidents, this system provide drivers with the safety of ensure to measures that a service inform current situation. in this paper, the crash occur in fog to prevent accident using vehicle safety system to give a alarm and control. The proposed system is installed on the outside of the vehicle, humidity, and ambient light sensors inside the car from the information collected by the system controller for the detection of fog conditions using video equipment and then finally the fog occurs if you do not get the driver's field of events is causing the system.

  • PDF

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

Imlpememtation of the Autonomous Guided Vehicle Driving System for Durability Test (차량 내구성 테스트를 위한 무인 주행 시스템의 구현)

  • 정종원;윤영진;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.608-613
    • /
    • 2002
  • In this paper we developed the MPC sensor for steering control and steering control of the AGVDS(Autonomous Guided Vehicle Driving System) for Durability test. Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis parts in a short period of time on the designed road that has severe surface conditions. However it increased the drivers fatigue mainly caused by the severe driving conditions. The driver's difficulty to maintain the constant speed and control the steering wheel reduces the reliability of test results. In addition to the general detecting sensor for steering control was restricted by surrounding condition. So we need to develop steering control sensor was robust in the bad driving condition. In this paper we developed steering control sensor using magnetic induction which is robust in the bad driving condition and implemented the AGVDS.

  • PDF

A Study on the Improvement of Vehicle Recognition Rate of Vision System (Vision 시스템의 차량 인식률 향상에 관한 연구)

  • Oh, Ju-Taek;Lee, Sang-Yong;Lee, Sang-Min;Kim, Young-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.16-24
    • /
    • 2011
  • The vehicle electronic control system is being developed as the legal and social demand for ensuring driver's safety is rising. The various Driver Assistance Systems with various sensors such as radars, camera, and lasers are in practical use because of the falling price of hardware and the high performance of sensor and processer. In the preceding study of this research, the program was developed to recognize the experiment vehicle's driving lane and the cars nearby or approaching the experiment vehicle throughout the images taken by CCD camera. In addition, the 'dangerous driving analysis program' which is Vision System basis was developed to analyze the cause and consequence of dangerous driving. However, the Vision system developed in the previous studyhad poor recognition rate of lane and vehicles at the time of passing a tunnel, sunrise, or sunset. Therefore, through mounting the brightness response algorithm to the Vision System, the present study is aimed to analyze the causes of driver's dangerous driving clearly by improving the recognition rate of lane and vehicle, regardless of when and where it is.

A Study on Implementation for Real-time Lane Departure Warning System & Smart Night Vision Based on HDR Camera Platform (실시간 차선 이탈 경고 및 Smart Night Vision을 위한 HDR Camera Platform 구현에 관한 연구)

  • Park, Hwa-Beom;Park, Ge-O;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.123-126
    • /
    • 2017
  • The information and communication technology that is being developed recently has been greatly influencing the automobile market. In recent years, devices equipped with IT technology have been installed for the safety and convenience of the driver. However, it has the advantage of increased convenience as well as the disadvantage of increasing traffic accidents due to driver 's distraction. In order to prevent such accidents, it is necessary to develop safety systems of various types and ways. In this paper, we propose a method to implement a multi-function camera driving safety system that notifies a pedestrian and lane departure warning without using a radar sensor or a stereo video image, and a study on the analysis of a lane departure alarm software result.

  • PDF

Automated Brightness Control Using Distance Measuring Sensor for Reducing the Power Consumption of Emotional Lighting (감성 조명장치의 소모 전력 절감을 위한 거리 측정 센서 기반 자동 조광 제어)

  • Shin, Sung-Hun;Ji, Sang-Hoon;Jeong, Gu-Min;Lee, Young-Dae;Bae, Sung-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.247-253
    • /
    • 2011
  • In this paper, we propose and implement the automated brightness control system using distance measuring sensor for reducing the power consumption of emotional lighting device. In order to reduce the power consumption of emotional lighting devices which express continuous color changes, the proposed device measures the distance continuously using ultrasonic sensor and by using this, it also performs PWM Dimming control. The lighting device is composed of micro controller, LED driver, ultrasonic sensor, communication module and so on. And the device performs the real time brightness control by adapting the measured distance information from ultrasonic sensor to PWM signals. From this experiment, we implement the active lighting system which minimizes unnecessary power consumption during user's absence by adapting existing energy reducing techniques.

Design of LED Dimming Lighting System using Ultrasonic Sensor (초음파 센서를 이용한 LED 디밍 시스템조명 설계)

  • Yang, Woo Seok;Kim, Hye myeong;Cho, Young seek;Park, Dae Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • In this paper, an LED lighting system that is capable of automatic or maunal dimming control using a ultrasonic sensor and Bluetooth wireless communication technology is presented. The LED lighting system consists of a ultrasonic sensor, microcontroller unit, Bluetooth wireless communication, LED driver, and LED light source. By using the implemented LED lighting system sample, it is shown that the automatic and manual dimming control is realized. By using the ultrasonic sensor, the LED lighting is automatically brighter or dimmer depending on the distance between the sensor and an object. When using a smartphone that includes Bluetooth wireless communication function, one can not only manually control the brightness of the LED lighting from level 1 to 10, but also monitor the distance between the sensor and object on the smartphone.