• Title/Summary/Keyword: Sensing characteristics

Search Result 1,824, Processing Time 0.026 seconds

Atmospheric Correction of Sentinel-2 Images Using GK2A AOD: A Comparison between FLAASH, Sen2Cor, 6SV1.1, and 6SV2.1 (GK2A AOD를 이용한 Sentinel-2 영상의 대기보정: FLAASH, Sen2Cor, 6SV1.1, 6SV2.1의 비교평가)

  • Kim, Seoyeon;Youn, Youjeong;Jeong, Yemin;Park, Chan-Won;Na, Sang-Il;Ahn, Hoyong;Ryu, Jae-Hyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.647-660
    • /
    • 2022
  • To prepare an atmospheric correction model suitable for CAS500-4 (Compact Advanced Satellite 500-4), this letter examined an atmospheric correction experiment using Sentinel-2 images having similar spectral characteristics to CAS500-4. Studies to compare the atmospheric correction results depending on different Aerosol Optical Depth (AOD) data are rarely found. We conducted a comparison of Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Sen2Cor, and Second Simulation of the Satellite Signal in the Solar Spectrum - Vector (6SV) version 1.1 and 2.1, using Geo-Kompsat 2A (GK2A) Advanced Meteorological Imager (AMI) and Aerosol Robotic Network (AERONET) AOD data. In this experiment, 6SV2.1 seemed more stable than others when considering the correlation matrices and the output images for each band and Normalized Difference Vegetation Index (NDVI).

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

Development of a Deep-Learning Model with Maritime Environment Simulation for Detection of Distress Ships from Drone Images (드론 영상 기반 조난 선박 탐지를 위한 해양 환경 시뮬레이션을 활용한 딥러닝 모델 개발)

  • Jeonghyo Oh;Juhee Lee;Euiik Jeon;Impyeong Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1451-1466
    • /
    • 2023
  • In the context of maritime emergencies, the utilization of drones has rapidly increased, with a particular focus on their application in search and rescue operations. Deep learning models utilizing drone images for the rapid detection of distressed vessels and other maritime drift objects are gaining attention. However, effective training of such models necessitates a substantial amount of diverse training data that considers various weather conditions and vessel states. The lack of such data can lead to a degradation in the performance of trained models. This study aims to enhance the performance of deep learning models for distress ship detection by developing a maritime environment simulator to augment the dataset. The simulator allows for the configuration of various weather conditions, vessel states such as sinking or capsizing, and specifications and characteristics of drones and sensors. Training the deep learning model with the dataset generated through simulation resulted in improved detection performance, including accuracy and recall, when compared to models trained solely on actual drone image datasets. In particular, the accuracy of distress ship detection in adverse weather conditions, such as rain or fog, increased by approximately 2-5%, with a significant reduction in the rate of undetected instances. These results demonstrate the practical and effective contribution of the developed simulator in simulating diverse scenarios for model training. Furthermore, the distress ship detection deep learning model based on this approach is expected to be efficiently applied in maritime search and rescue operations.

A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp (Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구)

  • Woojin Jeon;Jong-Min Yeom;Jae-Heon Jung;Kyoung-Wook Jin;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1273-1281
    • /
    • 2023
  • Absolute radiometric calibration is a crucial process in converting the electromagnetic signals obtained from satellite sensors into physical quantities. It is performed to enhance the accuracy of satellite data, facilitate comparison and integration with other satellite datasets, and address changes in sensor characteristics over time or due to environmental conditions. In this study, field campaigns were conducted to perform vicarious calibration for the multispectral channels of the CAS500-1. Two valid field observations were obtained under clear-sky conditions, and the top-of-atmosphere (TOA) radiance was simulated using the MODerate resolution atmospheric TRANsmission 6 (MODTRAN 6) radiative transfer model. While a linear relationship was observed between the simulated TOA radiance of tarps and CAS500-1 digital numbers(DN), challenges such as a wide field of view and saturation in CAS500-1 imagery suggest the need for future refinement of the calibration coefficients. Nevertheless, this study represents the first attempt at absolute radiometric calibration for CAS500-1. Despite the challenges, it provides valuable insights for future research aiming to determine reliable coefficients for enhanced accuracy in CAS500-1's absolute radiometric calibration.

Automatic Extraction of Tree Information in Forest Areas Using Local Maxima Based on Aerial LiDAR (항공 LiDAR 기반 Local Maxima를 이용한 산림지역 수목정보 추출 자동화)

  • In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1155-1164
    • /
    • 2023
  • Currently, the National Forest Inventory (NFI) collects tree information by human, so the range and time of the survey are limited. Research is actively being conducted to extract tree information from a large area using aerial Light Detection And Ranging (LiDAR) and aerial photographs, but it does not reflect the characteristics of forest areas in Korea because it is conducted in areas with wide tree spacing or evenly spaced trees. Therefore, this study proposed a methodology for generating Digital Surface Model (DSM), Digital Elevation Model (DEM), and Canopy Height Model (CHM) images using aerial LiDAR, extracting the tree height through the local Maxima, and calculating the Diameter at Breath Height (DBH) through the DBH-tree height formula. The detection accuracy of trees extracted through the proposed methodology was 88.46%, 86.14%, and 84.31%, respectively, and the Root Mean Squared Error (RMSE) of DBH calculated based on the tree height formula was around 5cm, confirming the possibility of using the proposed methodology. It is believed that if standardized research on various types of forests is conducted in the future, the scope of automation application of the manual national forest resource survey can be expanded.

Changes in Rice Growth Characteristics during Intermittent Drainage Period using Multiple Sensing Technology (다중 센싱 기반 중간물떼기 기간에 따른 벼 생육 특성 변화)

  • Woo-jin Im;Dong-won Kwon;Hyeok-jin Bak;Ji-hyeon Lee;Sungyul Chang;Wan-Gyu Sang;Nam-Jin Chung;Jung-il Cho;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.78-87
    • /
    • 2024
  • The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.

Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region (영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적)

  • Cho, Young-Jun;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.83-107
    • /
    • 2014
  • This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.