In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
Korean Journal of Remote Sensing
/
v.39
no.5_4
/
pp.1155-1164
/
2023
Currently, the National Forest Inventory (NFI) collects tree information by human, so the range and time of the survey are limited. Research is actively being conducted to extract tree information from a large area using aerial Light Detection And Ranging (LiDAR) and aerial photographs, but it does not reflect the characteristics of forest areas in Korea because it is conducted in areas with wide tree spacing or evenly spaced trees. Therefore, this study proposed a methodology for generating Digital Surface Model (DSM), Digital Elevation Model (DEM), and Canopy Height Model (CHM) images using aerial LiDAR, extracting the tree height through the local Maxima, and calculating the Diameter at Breath Height (DBH) through the DBH-tree height formula. The detection accuracy of trees extracted through the proposed methodology was 88.46%, 86.14%, and 84.31%, respectively, and the Root Mean Squared Error (RMSE) of DBH calculated based on the tree height formula was around 5cm, confirming the possibility of using the proposed methodology. It is believed that if standardized research on various types of forests is conducted in the future, the scope of automation application of the manual national forest resource survey can be expanded.
The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.
This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.
The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.
To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.
In this study, we investigated the relationships between the air quality (PM2.5, PM10, O3) concentrations and local geographical characteristics (terrain heights, building area ratios, population density in 9 km × 9 km gridded subareas) in the Seoul metropolitan area. To analyze the terrain heights and building area ratios, we used the geographic information system data provided by the NGII (National Geographic Information Institute). Also, we used the administrative districts and population provided by KOSIS (Korean Statistical Information Service) to estimate population densities. We analyzed the PM2.5, PM10, and O3 concentrations measured at the 146 AQMSs (air quality monitoring system) within the Seoul metropolitan area. The analysis period is from January 2010 to December 2020, and the monthly concentrations were calculated by averaging the hourly concentrations. The terrain is high in the northern and eastern parts of Gyeonggi-do and low near the west coastline. The distributions of building area ratios and population densities were similar to each other. During the analysis period, the monthly PM2.5 and PM10 concentrations at 146 AQMSs were high from January to March. The O3 concentrations were high from April to June. The population densities were negatively correlated with PM2.5, PM10, and O3 concentrations (weakly with PM2.5 and PM10 but strongly with O3). On the other hand, the AQMS heights showed no significant correlation with the pollutant concentrations, implying that further studies on the relationship between terrain heights and pollutant concentrations should be accompanied.
In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situmeasurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.
Kim, Yeseul;Kwak, Geun-Ho;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
Korean Journal of Remote Sensing
/
v.34
no.5
/
pp.811-827
/
2018
The purpose of this study is to compare machine learning algorithm and deep learning algorithm in crop classification using multi-temporal remote sensing data. For this, impacts of machine learning and deep learning algorithms on (a) hyper-parameter and (2) training sample size were compared and analyzed for Haenam-gun, Korea and Illinois State, USA. In the comparison experiment, support vector machine (SVM) was applied as machine learning algorithm and convolutional neural network (CNN) was applied as deep learning algorithm. In particular, 2D-CNN considering 2-dimensional spatial information and 3D-CNN with extended time dimension from 2D-CNN were applied as CNN. As a result of the experiment, it was found that the hyper-parameter values of CNN, considering various hyper-parameter, defined in the two study areas were similar compared with SVM. Based on this result, although it takes much time to optimize the model in CNN, it is considered that it is possible to apply transfer learning that can extend optimized CNN model to other regions. Then, in the experiment results with various training sample size, the impact of that on CNN was larger than SVM. In particular, this impact was exaggerated in Illinois State with heterogeneous spatial patterns. In addition, the lowest classification performance of 3D-CNN was presented in Illinois State, which is considered to be due to over-fitting as complexity of the model. That is, the classification performance was relatively degraded due to heterogeneous patterns and noise effect of input data, although the training accuracy of 3D-CNN model was high. This result simply that a proper classification algorithms should be selected considering spatial characteristics of study areas. Also, a large amount of training samples is necessary to guarantee higher classification performance in CNN, particularly in 3D-CNN.
Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.
Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
Korean Journal of Remote Sensing
/
v.34
no.3
/
pp.439-450
/
2018
The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.