DOI QR코드

DOI QR Code

Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region

영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적

  • Cho, Young-Jun (Forecast Research Laboratory, National Institute of Meteorological Research, KMA, Department of Atmospheric Sciences, Yonsei University) ;
  • Kwon, Tae-Yong (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 조영준 (국립기상연구소 예보연구과, 연세대학교 대기과학과) ;
  • 권태영 (강릉원주대학교 대기환경과학과)
  • Received : 2013.11.20
  • Accepted : 2014.01.13
  • Published : 2014.02.28

Abstract

This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.

본 연구에서는 겨울철 영동지역에서 2001 ~ 2012(12년) 동안 일신적설 50 cm 이상의 3개 극한 대설사례를 선정하여 위성에서 관측된 구름을 추적하여 공간적 특성을 분석하였다. 그리고 그 특성을 레이더 강수와 비교하였다. 이 연구에서 선정된 영동지역 극한 대설사례는 영동지역(영동 앞바다)에서 발생하여 발달하거나 동한만 부근에서 발생하여 영동지역으로 이동해 들어오는 독립되고 잘 발달된 그리고 크기가 작은 대류형 구름과 관련이 있다. 주강수 시기의 이 구름덩어리의 최저휘도온도는 -$-40{\sim}-50^{\circ}C$로 낮고, 휘도온도 $-35^{\circ}C$ 혹은 $-40^{\circ}C$ 이하의 구름 크기는 약 17,000 ~ 40,000 $km^2$로 중규모 대류복합체($-52^{\circ}C$ 이하 구름크기 50,000 $km^2$)보다 작은 크기이다. 이 때 레이더의 강수면적(0.5 mm/hr 이상)도 약 4,000 ~ 8,000 $km^2$로 작고 독립된 강수 형태를 보인다. 위성의 구름영역과 레이더 강수영역은 영동 앞바다에 비슷하게 위치하였으나 레이더 강수의 중심이 상대적으로 영동 해안에 인접해 위치하였다. 또한 구름이 발달하는 과정에서 구름의 극값과 강수의 극값이 일치하지 않는 경우도 나타났다. 그러나 모든 사례에서 주강수 시기에 구름은 영동 앞바다에 위치하였다. 따라서 구름덩어리의 위치가 극한 대설에 있어 무엇보다 중요한 요소인 것으로 판단된다. 수증기 영상은 건조구역(암역)의 가장자리 북쪽에서 구름덩어리가 발달함을 보여주었다. 따라서 위성관측의 구름영상과 지상 레이더에 의한 강수관측 값과 비교하여 보았을 때, 위에 선정된 극한 대설 사례는 부저기압 혹은 소용돌이의 발달과 관련되어 있는 것으로 생각된다. 영동지역 극한 대설에 대한 초단기 예보에 있어 초기에 동한만 혹은 영동지역에서 작고 발달된 대류형 구름을 탐지하고 추적하는 것이 중요하다.

Keywords

References

  1. Ahn, B.-Y., T.-Y. Kwon, K.-H. Cho, J.-S. Lee, and K.- T. Lee, 2007. Analysis of cloud properties related to Yeongdong heavy snow using the MODIS cloud product, The Korean Journal of Remote Sensing, 23(2): 71-87 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2007.23.2.71
  2. Ahn, J.-B. and C.-H. Jeong, 1984. The limited area energy budget associated with an extratropical cyclone developed over the Japan Sea, Journal of Korean Meteorological Society, 20(2): 22-34 (in Korean with English abstract).
  3. Asai, T., 1988. Meso-scale features of heavy snowfalls in Japan Sea coastal regions of Japan, Tenki, 35: 156-161 (in Japanese with English abstract).
  4. Beckman, S.K., 1987. Operational use of water vapor imagery, NOAA Tech. Memo. NWS CR-87, NOAA/NWS, Kansas City, MO, USA, pp.15.
  5. Bleck, R., 1977. Numerical simulation of lee cyclogenesis in the Gulf of Genoa, Monthly Weather Review, 105: 428-445. https://doi.org/10.1175/1520-0493(1977)105<0428:NSOLCI>2.0.CO;2
  6. Chung, Y.-S., K.D. Hage, and E.R. Reinelt, 1976. On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian Mountains, Monthly Weather Review, 104: 879-891. https://doi.org/10.1175/1520-0493(1976)104<0879:OLCAAI>2.0.CO;2
  7. Evans, M.S., D. Keyser, L.F. Bosart, and G.L. Lackmann, 1994. A satellite-derived classification scheme for rapid maritime cyclogenesis, Monthly Weather Review, 122: 1381-1416. https://doi.org/10.1175/1520-0493(1994)122<1381:ASDCSF>2.0.CO;2
  8. Ford, R.P. and GW.K. Moore, 1990. Secondary cyclogenesis-Comparison of observation and theory, Monthly Weather Review, 118: 427-446. https://doi.org/10.1175/1520-0493(1990)118<0427:SCOOAT>2.0.CO;2
  9. Gurka, J.J., E.P. Auciello, A.F. Gigi, J.S. Waldstreicher, K.K. Keeter, S. Businger, and L.G. Lee, 1995. Winter weather forecasting throughout the Eastern United States. Part II: An operational perspective of cyclogenesis, Weather and Forecasting, 10: 21-41. https://doi.org/10.1175/1520-0434(1995)010<0021:WWFTTE>2.0.CO;2
  10. Heo, K.-Y., K.-J. Ha, and S.-H. Shin, 2005. On development mechanism of heavy snowfall event occurred in Busan on 5 March 2005, Journal of Korean Meteorological Society, 41(4): 547-556 (in Korean with English abstract).
  11. Kim, I.-H., T.-Y. Kwon, and D.-R. Kim, 2012. MTSAT Satellite image features on the severe storm events in Yeongdong region, Atmosphere, 22(1): 29-45 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.029
  12. Kwon, T.-Y., D.-H. Seo, and Y.-J. Cho, 2013. Synoptic Environment Associated with Extreme Heavy Snowfall Events in the Yeongdong Region, Proc. of The 3rd Workshop for Forecast Technique Fusion Research, Gangneung, Gangwon, Aug. 29-30, pp. 209-217 (in Korean).
  13. Lee, J.-G., T.-Y. Kwon, I.-U. Jeong, and B.-G. Kim, 2011. Development of the techniques for analyzing of severe weather meteorological variables in the Gangwon region I, National Institute of Meteorological Research, Seoul, South Korea: pp.802.
  14. Lee, H.-R., K.-I. Kim, J.-M. Yoo, and K.-D. Min, 2001. A study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation, Journal of Korean Meteorological Society, 37(2): 195-224 (in Korean with English abstract).
  15. Lee, H.-R., K.-E. Kim, J.-M. Yoo, and W.-J. Lee, 2002. Tropopause undulation associated with explosive development of a cyclone, Journal of Korean Meteorological Society, 38(5): 431-463 (in Korean with English abstract).
  16. Lee, T.-Y., Y.-Y. Park, and Y.-L. Lin, 1998. A numerical modeling study of mesoscale cyclogenesis to the East of the Korean peninsula, Monthly Weather Review, 126: 2305-2329. https://doi.org/10.1175/1520-0493(1998)126<2305:ANMSOM>2.0.CO;2
  17. Maddox, R.A., 1980. Meoscale Convective Complexes. Bulletin American Meteorological Society, 61: 1374-1387. https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
  18. Mansfield, D.A., 1996. The use of potential vorticity as an operational forecast tool, Meteorological Applications, 3: 195-210.
  19. Marshall, J.S. and W.M.K. Palmer, 1948. The distribution of raindrops with size, Journal of Meteorology, 5: 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  20. Miller, J.E., 1946. Cyclogenesis in the Atlantic coastal region of the United States, Journal of Meteorology, 2: 31-44.
  21. Nagata, M., 1993. Meso-${\beta}$-scale vortices developing along the Japan-Sea Polar-Airmass Convergence Zone (JPCZ) cloud band: Numerical simulation, Journal of the Meteorological Society of Japan, 71(1): 43-57. https://doi.org/10.2151/jmsj1965.71.1_43
  22. Rinehart, R.E., 2001. Radar for Meteorologists, 3rd ed., Rinehart, pp.428.
  23. Reed, R.J. and C.N. Duncan, 1987. Baroclinic instability as a mechanism for the serial development of polar lows: a case study, Tellus, 39A: 376-384. https://doi.org/10.1111/j.1600-0870.1987.tb00314.x
  24. Young, M.V., G.A. Monk, and K.A. Browning, 1987. Interpretation of satellite imagery of a deepening cyclone, Quarterly Journal of the Royal Meteorological Society, 113: 1089-1115. https://doi.org/10.1002/qj.49711347803
  25. Weldon, R.B., 1985. Conclusion and generalization: Water vapor image gray shades vs. moisture distribution, Satellite Applications Laboratory, NOAA/NESDIS, World Weather Building, Washington, DC 20233, USA: pp.6.

Cited by

  1. Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.577
  2. A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events vol.26, pp.4, 2016, https://doi.org/10.14191/Atmos.2016.26.4.509
  3. 영동 지역의 극한 대설 사례와 관련된 종관 환경 vol.24, pp.3, 2014, https://doi.org/10.14191/atmos.2014.24.3.343
  4. 2017년 1월 20일 영동 뇌설 사례에 대한 연직바람관측장비와 라디오미터 관측 자료의 분석 vol.34, pp.3, 2018, https://doi.org/10.7780/kjrs.2018.34.3.3
  5. 뇌전을 동반한 영동지역 대설 사례연구 vol.28, pp.2, 2014, https://doi.org/10.14191/atmos.2018.28.2.187
  6. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9