DOI QR코드

DOI QR Code

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012)

최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선

  • Park, Ki-Hong (Department of Atmospheric Science, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
  • Received : 2013.12.12
  • Accepted : 2013.12.26
  • Published : 2014.02.28

Abstract

We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

본 연구에서는 최근(2009-2012)의 MODIS 자료를 이용하여 천리안위성 관측 지역의 지표면 방출률 자료를 개선하였다(KNULSE_v2). 방출률 산출기법은 지표면이 식생과 토양으로만 구성되어 있다는 가정하에 방출률을 계산하는 식생피복법(Vegetation Cover Method)를 이용하였다. 주요 개선 내용은 1) 적설지수를 이용하여 적설에 의한 방출률 변화를 고려한 점, 2) 산출채널을 기존 2개(11, 12 ${\mu}m$)에서 4개(3.7, 8.7, 11, 12 ${\mu}m$)로 확대한 점, 3) 가장 최근의 5가지 지면피복자료를 조합하여 양질의 지면피복분류 자료를 이용한 점, 그리고 4) 최근에 개선된 방출률 조견표를 사용한 점이다. 산출된 자료는 식생이 최대로 성장하는 여름에 비교적 높고 반대로 겨울에 낮은 방출률을 보이며 계절에 따른 변화가 뚜렷하게 나타났다. 반면 사막이나 열대 우림 등 식생의 변화가 크지 않은 곳에서는 계절에 따른 방출률 변동이 매우 적게 나타났다. 눈덮임을 적용함에 따라 3.7, 8.7, 11 ${\mu}m$ 채널에서는 방출률이 증가되었으나 12 ${\mu}m$ 채널에서는 오히려 방출률이 감소되었다. 눈 덮임에 의한 방출률 변동을 고려한 결과 적설시 MODIS LSE와 유사한 방출률 변동패턴을 보였으며, 북반구 고위도에 적설이 존재하는 11월부터 4월까지의 상관관계가 크게 개선되었다(특히 11 ${\mu}m$). 그러나 방출률 차는 상대적으로 증가되었고 특히 3.7 ${\mu}m$ 채널에서 크게 나타났다. 본 연구에서 개선된 자료는 분리대기창 기반의 지표면온도 산출시 기초 입력자료로 사용하여 산출 정확도 향상에 기여할 수 있을 것이다.

Keywords

References

  1. Becker, F., and Z.L. Li, 1990. Temperature-independent spectral indices in thermal infrared bands, Remote Sensing of Environment, 32(1): 17-33. https://doi.org/10.1016/0034-4257(90)90095-4
  2. Carlson, T.N., and D.A. Ripley, 1997. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index, Remote Sensing of Environment, 62(3): 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  3. Caselles, E., E. Valor, F. Abad, and V. Caselles, 2012. Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe, Remote Sensing of Environment, 124: 321-333. https://doi.org/10.1016/j.rse.2012.05.024
  4. Cho, A-R., and M.-S. Suh, 2013a. Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatiotemporal continuity, Asia-Pacific Journal of Atmospheric Sciences, 49(4): 511-525. https://doi.org/10.1007/s13143-013-0045-7
  5. Cho, A-R., and M.-S. Suh, 2013b. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS) Data, Remote Sening, 5(8): 3951-3970. https://doi.org/10.3390/rs5083951
  6. Coll, C., E. Valor, J.M. Galve, M. Mira, M. Bisquert, V. García-Santos, E. Caselles, and V. Caselles, 2012. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer, Remote Sensing of Environment, 116(15): 211-225. https://doi.org/10.1016/j.rse.2010.01.027
  7. Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle, 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126. https://doi.org/10.1109/36.700995
  8. Hall, D.K., G.A. Riggs, V.V. Salomonson, N.E. DeGirolamo, and K.J. Bayr, 2002. MODIS snow-cover products, Remote Sensing of Environment, 83: 181-194. https://doi.org/10.1016/S0034-4257(02)00095-0
  9. Hong, K.-O., M.-S. Suh, and J.-H. Kang, 2009. Development of a Land Surface Temperature-Retrieval Algorithm from MTSAT-1R Data, Asia-Pacific Journal of Atmospheric Sciences, 45(4): 411-421.
  10. Hulley, G.C. and S.J. Hook, 2009. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia, Remote Sensing of Environment, 113(6): 1313-1318. https://doi.org/10.1016/j.rse.2009.02.018
  11. Jimenez-Munoz J.C., J.A. Sobrino, A. Plaza, L. Guanter, J. Moreno, and P. Martinez, 2009. Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area, Sensors, 9: 768-793. https://doi.org/10.3390/s90200768
  12. Julien, Y. and J.A. Sobrino, 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data, Remote Sensing of Environment, 114(3): 618-625. https://doi.org/10.1016/j.rse.2009.11.001
  13. Kang, J.-H., M.-S., Suh, and C.-H. Kwak, 2007. A Comparison of the Land Cover Data Sets over Asian Region: USGS, IGBP, and UMd, Atmosphere, 17(2): 159-169.
  14. Kang, J.-H. and M.-S. Suh, 2008. Emissivity Retrieval for land surface temperature from COMS data, Proc. of the Spring Meeting of KMS 2008, pp.320-321.
  15. Kang, J.-H., M.-S., Suh, and C.-H. Kwak, 2010. Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008), Atmosphere, 20(4): 415-426.
  16. Kerr, Y.H., J.P. Lagouarde, and J. Imbernon, 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm, Remote Sensing of Environment, 41(2-3): 197-209. https://doi.org/10.1016/0034-4257(92)90078-X
  17. Korea Meteorological Administration(KMA), 2012. Retrieval of land surface information from satellite data and their application, pp. 58-95.
  18. Kornfield, J., and J. Susskind, 1977. On the effect of surface emissivity on temperature retrievals, Monthly Weather Review, 105(12): 1605-1608. https://doi.org/10.1175/1520-0493(1977)105<1605:OTEOSE>2.0.CO;2
  19. Li, Z., J. Li, X. Jin, T.J. Schmit, E.E. Borbas, and M.D. Goldberg, 2010. An objective methodology for infrared land surface emissivity evaluation, Journal of Geophysical Research: Atmospheres, 115(D22): doi:10.1029/2010JD014249.
  20. Li, Z.-L., H. Wu, N. Wang, S. Qiu, J.A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, 2012. Land surface emissivity retrieval from satellite data, International Journal of Remote Sensing, 34: 3084-3127.
  21. McCallum, I., M. Obersteiner, S. Nilsson, A. Shvidenko, 2006. A spatial comparison of four satellite derived 1 km global land cover datasets, International Journal of Applied Earth Observation and Geoinformation, 8(4): 246-255. https://doi.org/10.1016/j.jag.2005.12.002
  22. Park, J.-H., A-R. Cho, J.-H. Kang, and M.-S. Suh, 2011. Detection and Correction of Noisy Pixels Embedded in NDVI Time Series Based on the Spatiotemporal Continuity, Atmosphere, 21(4): 337-347. https://doi.org/10.14191/ATMOS.2011.21.4.337
  23. Park, K.-H., and M.-S. Suh, 2013. Inter-comparison of three land surface emissivity data sets (MODIS, CIMSS, KNU) in the Asian-Oceanian regions, Korean Journal of Remote Sensing, 29(2): 219-233(in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.6
  24. Peres, L.F., and C.C. DaCamara, 2005. Emissivity Maps to Retrieve Land-Surface Temperature From MSG/SEVIRI, IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1834-1844. https://doi.org/10.1109/TGRS.2005.851172
  25. Prata, A.J., 2002. Land surface temperature measurement from space: AATSR algorithm theoretical basis document, Technical report.
  26. Seemann, S.W., E.E. Borbas, R.O. Knuteson, G.R. Stephenson, and H.-L. Huang, 2008. Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements, Journal of Applied Meteorology and Climatology, 47(1): 108-123. https://doi.org/10.1175/2007JAMC1590.1
  27. Sobrino, J.A., and N. Raissouni, 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco, International Journal of Remote Sensing, 21(2): 21353-21366.
  28. Sobrino, J.A., J.C. Jimenez-Munoz, G. Soria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza, and P. Martinez, 2008. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327. https://doi.org/10.1109/TGRS.2007.904834
  29. Valor, E., and V. Caselles, 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sensing of Environment, 57: 164-184.
  30. Wan, Z, 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products, Remote Sensing of Environment, 112(1): 59-74. https://doi.org/10.1016/j.rse.2006.06.026

Cited by

  1. Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature vol.32, pp.5, 2016, https://doi.org/10.7780/kjrs.2016.32.5.4
  2. A Study on Establishment of Appropriate Observation Time for Estimation of Daily Land Surface Temperature using COMS in Korea Peninsula vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.037
  3. 다중선형회귀모형에 의한 지표면 광대역 방출율 산출 vol.38, pp.4, 2014, https://doi.org/10.5467/jkess.2017.38.4.269
  4. Development of Himawari-8/Advanced Himawari Imager (AHI) Land Surface Temperature Retrieval Algorithm vol.10, pp.12, 2014, https://doi.org/10.3390/rs10122013