DOI QR코드

DOI QR Code

Changes in Rice Growth Characteristics during Intermittent Drainage Period using Multiple Sensing Technology

다중 센싱 기반 중간물떼기 기간에 따른 벼 생육 특성 변화

  • 임우진 (농촌진흥청 국립식량과학원) ;
  • 권동원 (농촌진흥청 국립식량과학원) ;
  • 박혁진 (농촌진흥청 국립식량과학) ;
  • 이지현 (농촌진흥청 국립식량과학) ;
  • 장성율 (농촌진흥청 국립식량과학원) ;
  • 상완규 (농촌진흥청 국립식량과학원) ;
  • 정남진 (전북대학교 작물생명과학과) ;
  • 조정일 (농촌진흥청 국립식량과학원) ;
  • 황운하 (농촌진흥청 국립식량과학원)
  • Received : 2024.03.14
  • Accepted : 2024.05.07
  • Published : 2024.06.01

Abstract

The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.

중간물떼기 기간연장에 따른 벼 생육반응 변화를 분석한 결과는 다음과 같다. 1. 관행 2주간 중간물떼기 대비 중간물떼기 기간이 3주로 연장되었을 경우 수량 및 수량구성요소는 유의한 차이가 없다. 2. 중간물떼기 기간이 4주로 연장되었을 경우 임실률과 영화수, 수량이 급격하게 감소하였다. 3. 중간물떼기가 4주 이상 지속될 경우 NDVI, PRI, CWSI 값이 유의하게 변화하였다. 4. 중간물떼기 기간 연장에 따른 식생지수별 생육지표와의 관계를 분석한 결과 NDVI 대비 CWSI가 약 4일 정도 더 빠르게 한발 스트레스를 감지하였으며 가역적 스트레스 또한 용이하게 확인할 수 있었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(사업번호: PJ016759012023)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Alderfasi, A. A. and D. C. Nielsen. 2001. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management 47(1) : 69-75.  https://doi.org/10.1016/S0378-3774(00)00096-2
  2. Banerjee, T. B. T. and R. Linn. 2018. Effect of vertival canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9(4) : 198. 
  3. Boori, M. S., K., Choudhary, and A. V. Kupriyanov. 2020. Crop growth monitoring through Sentinel and Landsat data based NDVI time-series. Computer Optics 44 : 409-419.  https://doi.org/10.18287/2412-6179-CO-635
  4. Bouman, B. A. M. and T. P. Toung. 2001. Field water management to save water and increase its productivity irrigated lowland rice. Agricultural Water Management 49(1) : 11-30.  https://doi.org/10.1016/S0378-3774(00)00128-1
  5. Carlson, T. N. and D. A. Ripley. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62(3) : 241-252.  https://doi.org/10.1016/S0034-4257(97)00104-1
  6. Conrad, R. 2007. Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy 96 : 1-63.  https://doi.org/10.1016/S0065-2113(07)96005-8
  7. Filella, I., A. Porcar-Castell, S. Munne-Bosch, J. Back, M. F. Garbulsky, and J. Penuelas. 2009. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. International Journal of Remote Sensing 30 : 4443-4455.  https://doi.org/10.1080/01431160802575661
  8. Filella, I., T. Amaro, J. L. Araus, and J. Penuelas. 1996. Relationship between photosynthetic radiation-use efficiency of barely canopies and the photochemical reflectance index (PRI). Physiologia Plantarum. 96(2) : 211-216.  https://doi.org/10.1111/j.1399-3054.1996.tb00204.x
  9. Garbulsky, M. F., J. Penuelas, J. Gamon, Y. Inoue, and I. Filella. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote sensing of environment 115(2) : 281-297. 
  10. Greenhouse Gas Inventory&Research Center of Korea (GIR). 2020. 2020 National Inventory Report. 
  11. Haque, M. M., J. C. Biswas, S. Y. Kim, and P. J. Kim. 2017. Intermittent drainage in paddy soil: ecosystem carbon budget and global warming potential. Paddy and water environment 15 : 403-411.  https://doi.org/10.1007/s10333-016-0558-7
  12. Idso, S. B., R. D. Jackson, P. J. Pinter Jr., R. J. Reginato, and J. L. Hatfield. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24 : 45-55.  https://doi.org/10.1016/0002-1571(81)90032-7
  13. Kim, G. Y., J. Gutierrez, H. C. Jeong, J. S. Lee, M. M. Haque, and P. J. Kim. 2014. Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperature paddy soil during rice cultivation. Journal of the Korean Society for Applied Biological Chemistry 57 : 229-236.  https://doi.org/10.1007/s13765-013-4298-8
  14. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2021. 2050 Net-zero Strategy in the agri-food sector. 
  15. Penuelas, J., R. Isla, I. Fiella, and J. L. Araus. 1997. Visible and Near-Infrared Reflectance Assessment of Salinit Effects on Barely. Crop Science 37(1) : 198-202.  https://doi.org/10.2135/cropsci1997.0011183X003700010033x
  16. Rural Development Administration (RDA). 2012. Standard of analysis and survey for agricultural research. RDA, Jeonju, Korea. 
  17. Rural Development Administration (RDA). 2014. Fertilizer recommendation for crop production. RDA, Suwon, Korea.
  18. Wada, Y., and G. Wada. 1991. Varietal difference leaf senescence during ripening period of advanced indica rice. Japenese Journal of Crop Science 60(4) : 529-536  https://doi.org/10.1626/jcs.60.529
  19. Yoshida. 1981. Fundamentals of rice crop science. IRRI, Los Banos, Philippines. 
  20. Zhang, R., Y. Zhou, Z. Yueu, X. Chen, X. Cao, X. Ai, B. Jiang, and Y. Xing. 2019. The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. PLoS One 14(7) : e0219209.