• Title/Summary/Keyword: Semiconductor sheet

Search Result 131, Processing Time 0.026 seconds

A study on the dose distribution for total-body & hemibody irradiation using clinical photon beams (광자선을 이용한 전신 및 반신조사의 선량분포에 관한 고찰)

  • 김진기;권형철;김정수;오영기;김기환;신교철;김정홍;박충기;정동혁
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.147-153
    • /
    • 2001
  • We have discussed that the total body irradiation(TBI) dose distribution of 6 and 10 MV photon beams, also differences between calculation dose use of compensator sheet and measurements in humanoid phantom. Total body irradiation and hemi-body irradiation(HBI) can be effectively performed when uniformity of dose distribution is estabilished. The method of TBI and HBI dosimatry requires special considerations related to technique, long distance and very large field, machine parameter, patient positioning. TBI and HBI with megavoltage photon beams requires basic dosimatric data which have to be measured directly or derived from the standard beam data. The semiconductor detector and ion chamber were positioned at a dmax depth, mid depth, and its specific ratio was determined using a scanning data by RFA-7 3-dimensional water phantom and solid phantom. The effective source axis distance 380 cm, the field size from 120 cm to 152 cm, isodose distributions were analyzed as a function of the thickness in phantom. Also, have discussed that the measurement of basic data for clinical photon beams for dosage calculations, data calculation sheet and the use of tissue compensation to improve dose uniformity. We have improved a dose uniformity in the TBI and HBI method.

  • PDF

Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films (ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1285-1290
    • /
    • 2017
  • We prepared ITZO thin films with various thicknesses on glass substrates using RF magnetron sputtering and investigated electrical, optical and structural properties of the thin film. Sheet resistance of ITZO thin film showed a decreasing trend on the increase of film thickness, but its resistivity exhibited a substantially constant value of $5.06{\pm}1.23{\times}10^{-4}{\Omega}-cm$. Transmittance of ITZO thin film moved to the long-wavelength with the increase of film thickness. Figure of merit in a visible light and an absorption area of P3HT:PCBM organic active layer of the 360nm-thick IZTO thin film was $8.21{\times}10^{-3}{\Omega}^{-1}$ and $9.29{\times}10^{-3}{\Omega}^{-1}$, respectively. Through XRD and AFM measurements, it was confirmed that all the ITZO thin films have amorphous structure and the surface roughness of films are very smooth in the range of 0.561 to 0.263 nm. In this study, it was found that amorphous ITZO thin film is a very promising material for organic solar cell.

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.

Low Resistance Indium-based Ohmic Contacts to N-face n-GaN for GaN-based Vertical Light Emitting Diodes (GaN계 수직형 발광 다이오드를 위한 N-face n-GaN의 인듐계 저저항 오믹접촉 연구)

  • Kang, Ki Man;Park, Min Joo;Kwak, Joon Seop;Kim, Hyun Soo;Kwon, Kwang Woo;Kim, Young Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.456-461
    • /
    • 2010
  • We investigated the In-based ohmic contacts on Nitrogen-face (N-face) n-type GaN, as well as Ga-face n-type GaN, for InGaN-based vertical Light Emitting Diodes (LEDs). For this purpose, we fabricated Circular Transfer Length Method (CTLM) patterns on the N-face n-GaN that were prepared by using a laser-lift off method, as well as on the Ga-face n-GaN that were prepared by using a dry etching method. Then, In/transparent conducting oxide (TCO) and In/TiW schemes were deposited on the CTLM in order for low resistance ohmic contacts to form. The In/TCO scheme on the Ga-face n-GaN showed high specific contact resistance, while the minimum specific contact resistance was only 3${\times}$10$^{-2}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$, which can be attributed to the high sheet resistance of the TCO layer. In contrast, the In/TiW scheme on the Ga-face n-GaN produced low specific contact resistance of 2.1${\times}$10$^{5}$ $\Omega$-cm$^{2}$ after annealing at 500${^{\circ}C}$ for 1 min. In addition, the In/TiW scheme on the N-face n-GaN also resulted in a low specific contact resistance of 2.2${\times}$10$^{-4}$ $\Omega$-cm$^{2}$ after annealing at 300${^{\circ}C}$. These results suggest that both the Ga-face n-GaN and N-face n-GaN.

Copper Ohmic Contact on n-type SiC Semiconductor (탄화규소 반도체의 구리 오옴성 접촉)

  • 조남인;정경화
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.29-33
    • /
    • 2003
  • Material and electrical properties of copper-based ohmic contacts on n-type 4H-SiC were investigated for the effects of the post-annealing and the metal covering conditions. The ohmic contacts were prepared by sequential sputtering of Cu and Si layers on SiC substrate. The post-annealing treatment was performed using RTP (rapid thermal process) in vacuum and reduction ambient. The specific contact resistivity ($p_{c}$), sheet resistance ($R_{s}$), contact resistance ($R_{c}$), transfer length ($L_{T}$), were calculated from resistance (RT) versus contact spacing (d) measurements obtained from TLM (transmission line method) structure. The best result of the specific contact resistivity was obtained for the sample annealed in the reduction ambient as $p_{c}= 1.0 \times 10^{-6}\Omega \textrm{cm}^2$. The material properties of the copper contacts were also examined by using XRD. The results showed that copper silicide was formed on SiC as a result of intermixing Cu and Si layer.

  • PDF

Cleaning Effects by NH4OH Solution on Surface of Cu Film for Semiconductor Devices (NH4OH용액이 반도체 소자용 구리 박막 표면에 미치는 영향)

  • Lee, Youn-Seoung;Noh, Sang-Soo;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.459-464
    • /
    • 2012
  • We investigated cleaning effects using $NH_4OH$ solution on the surface of Cu film. A 20 nm Cu film was deposited on Ti / p-Si (100) by sputter deposition and was exposed to air for growth of the native Cu oxide. In order to remove the Cu native oxide, an $NH_4OH$ cleaning process with and without TS-40A pre-treatment was carried out. After the $NH_4OH$ cleaning without TS-40A pretreatment, the sheet resistance Rs of the Cu film and the surface morphology changed slightly(${\Delta}Rs:{\sim}10m{\Omega}/sq.$). On the other hand, after $NH_4OH$ cleaning with TS-40A pretreatment, the Rs of the Cu film changed abruptly (${\Delta}Rs:till{\sim}700m{\Omega}/sq.$); in addition, cracks showed on the surface of the Cu film. According to XPS results, Si ingredient was detected on the surface of all Cu films pretreated with TS-40A. This Si ingredient(a kind of silicate) may result from the TS-40A solution, because sodium metasilicate is included in TS-40A as an alkaline degreasing agent. Finally, we found that the $NH_4OH$ cleaning process without pretreatment using an alkaline cleanser containing a silicate ingredient is more useful at removing Cu oxides on Cu film. In addition, we found that in the $NH_4OH$ cleaning process, an alkaline cleanser like Metex TS-40A, containing sodium metasilicate, can cause cracks on the surface of Cu film.

A Study on the Structure Fabrication of LDD-nMOSFET using Rapid Thermal Annealing Method of PSG Film (PSG막의 급속열처리 방법을 이용한 LDD-nMOSFET의 구조 제작에 관한 연구)

  • 류장렬;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.80-90
    • /
    • 1994
  • To develop VLSI of higher packing density with 0.5.mu.m gate length of less, semiconductor devices require shallow junction with higher doping concentration. the most common method to form the shallow junction is ion implantation, but in order to remove the implantation induced defect and activate the implanted impurities electrically, ion-implanted Si should be annealed at high temperature. In this annealing, impurities are diffused out and redistributed, creating deep PN junction. These make it more difficult to form the shallow junction. Accordingly, to miimize impurity redistribution, the thermal-budget should be kept minimum, that is. RTA needs to be used. This paper reports results of the diffusion characteristics of PSG film by varying Phosphorus weitht %/ Times and temperatures of RTA. From the SIMS.ASR.4-point probe analysis, it was found that low sheet resistance below 100 .OMEGA./ㅁand shallow junction depths below 0.2.mu.m can be obtained and the surface concentrations are measured by SIMS analysis was shown to range from 2.5*10$^{17}$ aroms/cm$^{3}$~3*10$^{20}$ aroms/cm$^{3}$. By depending on the RTA process of PSG film on Si, LDD-structured nMOSFET was fabricated. The junction depths andthe concentration of n-region were about 0.06.mu.m. 2.5*10$^{17}$ atom/cm$^{-3}$ , 4*10$^{17}$ atoms/cm$^{-3}$ and 8*10$^{17}$ atoms/cm$^{3}$, respectively. As for the electrical characteristics of nMOS with phosphorus junction for n- region formed by RTA, it was found that the characteristics of device were improved. It was shown that the results were mainly due to the reduction of electric field which decreases hot carriers.

  • PDF

Deposition of Spacer-Si3N4 Thin Film for WSi2 Word-Line and Bit-Line (WSi2 word-line 및 bit-line용 spacer-Si3N4 박막의 증착)

  • Ahn S.;Kim D.W.;Kim J.H;Ahn S.J.;Kim Y.J.;Kim H.S.
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.402-406
    • /
    • 2004
  • $WSi_2$, $TiSi_2$, $CoSi_2$, and $TaSi_2$ are general silicides used today in semiconductor devices. $WSi_2$ thin films have been proposed, studied and used recently in CMOS technology extensively to reduce sheet resistance of polysilicon and $n^{+}$ region. However, there are several serious problems encountered because $WSi_2$ is oxidized and forms a native oxide layer at the interface between $WSi_2$ and $Si_3$$N_4$. In this study, we have introduced 20 $slm-N_2$ gas from top to bottom of the furnace in order to control native oxide films between $WSi_2$ and $Si_3$$N_4$ film. In resulting SEM photographs, we have observed that the native oxide films at the surface of $WSi_2$ film are removed using the long injector system.

The study of plasma source ion implantation process for ultra shallow junctions (Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구)

  • Lee, S.W.;Jeong, J.Y.;Park, C.S.;Hwang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Han, S.H.;Kim, K.M.;Lee, W.J.;Rha, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.