DOI QR코드

DOI QR Code

Cleaning Effects by NH4OH Solution on Surface of Cu Film for Semiconductor Devices

NH4OH용액이 반도체 소자용 구리 박막 표면에 미치는 영향

  • Lee, Youn-Seoung (Department of Information & Communication Engineering, Hanbat National University) ;
  • Noh, Sang-Soo (Department of Information & Communication Engineering, Hanbat National University) ;
  • Rha, Sa-Kyun (Department of Materials Engineering, Hanbat National University)
  • 이연승 (한밭대학교 정보통신공학과) ;
  • 노상수 (한밭대학교 정보통신공학과) ;
  • 나사균 (한밭대학교 재료공학과)
  • Received : 2012.07.02
  • Accepted : 2012.08.13
  • Published : 2012.09.27

Abstract

We investigated cleaning effects using $NH_4OH$ solution on the surface of Cu film. A 20 nm Cu film was deposited on Ti / p-Si (100) by sputter deposition and was exposed to air for growth of the native Cu oxide. In order to remove the Cu native oxide, an $NH_4OH$ cleaning process with and without TS-40A pre-treatment was carried out. After the $NH_4OH$ cleaning without TS-40A pretreatment, the sheet resistance Rs of the Cu film and the surface morphology changed slightly(${\Delta}Rs:{\sim}10m{\Omega}/sq.$). On the other hand, after $NH_4OH$ cleaning with TS-40A pretreatment, the Rs of the Cu film changed abruptly (${\Delta}Rs:till{\sim}700m{\Omega}/sq.$); in addition, cracks showed on the surface of the Cu film. According to XPS results, Si ingredient was detected on the surface of all Cu films pretreated with TS-40A. This Si ingredient(a kind of silicate) may result from the TS-40A solution, because sodium metasilicate is included in TS-40A as an alkaline degreasing agent. Finally, we found that the $NH_4OH$ cleaning process without pretreatment using an alkaline cleanser containing a silicate ingredient is more useful at removing Cu oxides on Cu film. In addition, we found that in the $NH_4OH$ cleaning process, an alkaline cleanser like Metex TS-40A, containing sodium metasilicate, can cause cracks on the surface of Cu film.

Keywords

References

  1. H. H. Law, R. Roy, D. Korssives, T. C. Wu, and D. D. Bacon, in Proceedings of the Electronic Manufacturing Technology Symposium, 6th IEEE/CPMT Int'l EMTS (La Jolla, CA, Sep. 1994) p. 363-365.
  2. T. G. Woo, I. S. Park and K. W. Seol, Kor. J. Mater. Res., 17(1), 56 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.1.056
  3. Y. Song, J. H. Seo, Y. S. Lee and S. K. Rha, Kor. J. Mater. Res., 19(6), 344 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.6.344
  4. Y. Song, J. H. Seo, Y. S. Lee, Y. H. Ryu, K. Hong and S. K. Rha, J. Korean Phys. Soc., 54, 1141 (2009). https://doi.org/10.3938/jkps.54.1141
  5. J. Gao, A. Hu, M. Li and D. Mao, Appl. Surf. Sci., 255, 5943 (2009). https://doi.org/10.1016/j.apsusc.2009.01.040
  6. J. J. Kim, S. K. Kim, Appl. Surf. Sci., 183, 311 (2001). https://doi.org/10.1016/S0169-4332(01)00585-2
  7. K. E. Heusler and K. S. Yun, Electrochim. Acta, 22, 977 (1977). https://doi.org/10.1016/0013-4686(77)85009-3
  8. A. R. Martin, M. Baeyens, W. Hub, P. W. Mertens and B. O. Kolbesen, Microelec. Eng., 45, 197 (1999). https://doi.org/10.1016/S0167-9317(99)00150-1
  9. J. W. Park, J. G. Park, K. S. Kim and H. S. Song, Kor. J. Mater. Res., 9(9), 872 (1999) (in Korean).
  10. S. A. Mir, Int. J. ChemTech Res., 3(2), 646 (2011).
  11. Y. S. Lee, S. S Kim and S. K. Rha, J. Kor. Vacuum Soc., 21(1), 6 (2012) (in Korean). https://doi.org/10.5757/JKVS.2012.21.1.6
  12. "Material safety data sheet" MacDermid Incorporated 203, 575-5700 (1999).
  13. H. -U. Finzel, E. Schmiedl and P. Wibmann, Appl. Phys. Solid. Surface., 42, 87 (1987). https://doi.org/10.1007/BF00618162