• Title/Summary/Keyword: Semiconductor devices

Search Result 1,733, Processing Time 0.026 seconds

On the development of succesive finite element code for semiconductor devices analysis (유한요소법(有限要素法)에 의한 반도체(半導體) 소자(素子) 해석(解析)의 안정화(安定化)에 관한 연구(硏究))

  • Choi, Kyung
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.109-117
    • /
    • 1989
  • In the finite element analysis of semiconductor devices analysis, the solution often be diverged due to the numerical instability of discretized equations. To overcome this problems, a noble finite element code which guarantees a successful convergence is developed. The factor of divergence in the current continuity equation of semiconductor governing equations is derived using stability test and an adaptive mesh refine scheme is introduced to eliminates the divergence properties. A test calculation of GaAs MESFET model reveals that the proposed scheme has a robust self-convergence property and is suitable for the semiconductor devices analysis.

  • PDF

Macro Modeling and Parameter Extraction of Lateral Double Diffused Metal Oxide Semiconductor Transistor

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2011
  • High voltage (HV) integrated circuits are viable alternatives to discrete circuits in a wide variety of applications. A HV device generally used in these circuits is a lateral double diffused metal oxide semiconductor (LDMOS) transistor. Attempts to model LDMOS devices are complicated by the existence of the lightly doped drain and by the extension of the poly-silicon and the gate oxide. Several physically based investigations of the bias-dependent drift resistance of HV devices have been conducted, but a complete physical model has not been reported. We propose a new technique to model HV devices using both the BSIM3 SPICE model and a bias dependent resistor model (sub-circuit macro model).

Design of Continuous Passive Motion Medical Device System with Range of Motion Measurement Function (관절가동범위 측정 기능을 갖는 연속수동운동 의료기기 시스템 설계)

  • Kang Won Lee;Min Soo Park;Do Woo Yu;Oh Yang;Chang Ho Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.87-92
    • /
    • 2023
  • As the elderly population increases, the number of patients with various joint diseases, including degenerative arthritis, is steadily increasing. CPM medical devices are needed to effectively treat degenerative arthritis that is common in the elderly population. Domestic CPM medical devices have limited functions and are highly dependent on imports for expensive imported medical devices. To solve this problem, we designed a ROM measurement function using a current sensor that is not present in existing composite joint CPM medical devices. The algorithm was designed using the fact that the force caused by joint stiffness greatly increases the current flowing through the DC motor. In addition, the need for digital healthcare in the medical field is gradually expanding as the proportion of chronically ill patients increases due to the spread of the non-face-to-face economy due to COVID-19 and the aging population. Therefore, this paper aims to improve the performance of CPM medical devices by allowing real-time confirmation of rehabilitation exercise information and operation range measurement results in accordance with digital healthcare trends through a Bluetooth application developed as an Android studio.

  • PDF

Characteristics of Electrostatic Attenuation in Semiconductor (반도체 소자의 정전기 완화특성)

  • 김두현;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 1999
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipment need to be more alert to the problem of electrostatic discharges(ESD). Semiconductor devices such as IC, LSI, VLSI become a high density pattern of being more fragile by ESD phenomena. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the electrostatic discharge sensitive devices. Accordingly, characteristics of electrostatic attenuation in domestic semiconductor devices is investigated to evaluate the ESD phenomina in the semiconductors in this paper. The required data are obtained by Static Honestmeter. Also The results in this paper can be used for the prevention of semiconductor failure by ESD.

  • PDF

Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbines

  • Lee, Kihyun;Jung, Kyungsub;Suh, Yongsug;Kim, Changwoo;Cha, Taemin;Yoo, Hyoyol;Park, Sunsoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.386-387
    • /
    • 2013
  • This paper provides a comparison of high power semiconductor devices in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor devices of IGBT module type, IGBT press-pack type, and IGCT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on neutral-point clamed 3-level back-to-back type voltage source converter supplied from grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through the loss analysis considering both conduction and switching losses under the given operating conditions of 5MW-class PMSG wind turbines, particularly for the application in offshore wind farms. The loss analysis is confirmed through PLECS simulations. The comparison result shows that IGBT press-pack type semiconductor device has the highest efficiency and IGCT has the lowest cost factor considering the necessary auxiliary components.

  • PDF

The Non-Linear Characteristics of ZnO Devices. (ZnO 소자의 비직선 특성)

  • Hong, Kyung-Jin;Chon, Kyung-Nam;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.43-46
    • /
    • 2001
  • The ZnO devices using semiconductor properties, to include $MnO_2$, $Y_2O_3$ and other material, was fabricated by $Sb_2O_3$ mol ratio from 1 to 4 [mol%]. The non-linearity factor was calculated by setting current to be $1[mA/cm^2]$ and $10[mA/cm^2]$. The spinel structure was fonned by $Sb_2O_3$ addition and it was depressed the ZnO grain formation. The grain growing was controlled by spinel structure that has improved the non-linearity factors. The breakdown voltage characteristics of semiconductor devices to increase with $Sb_2O_3$ was increased in voltage-current. The non-linearity value of ZnO semiconductor devices was 45 over.

  • PDF

Physical issues for the next generation of nano devices (차세대 나노소자에서의 물리적 논점)

  • Cho, Mann-Ho
    • Vacuum Magazine
    • /
    • v.1 no.3
    • /
    • pp.21-27
    • /
    • 2014
  • Advanced process and integration for future semiconductor devices is approaching the physical limit. The new materials with low dimensional structure have recently attracted great attention due to its expandability for the future electronic devices. In order to apply the materials to future semiconductor devices, the control of carrier scattering is critical issue. That is, the carrier scattering with physical quantity in low dimensional structure significantly modulates the device characteristics. We introduce the role of defect in several future semiconductor materials and devices. The analysis of defect in the structure becomes the most important techniques. In particular, surface defect in nano structures totally controls the device characteristics. The changes imply that the metrology field is leading the future industry for semiconductor.

Technical Trend of Fusion Semiconductor Devices Composed of Silicon and Compound Materials (실리콘-화합물 융합 반도체 소자 기술동향)

  • Lee, S.H.;Chang, S.J.;Lim, J.W.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.8-16
    • /
    • 2017
  • In this paper, we review studies attempting to triumph over the limitation of Si-based semiconductor technologies through a heterogeneous integration of high mobility compound semiconductors on a Si substrate, and the co-integration of electronic and/or optical devices. Many studies have been conducted on the heterogeneous integration of various materials to overcome the Si semiconductor performance and obtain multi-purpose functional devices. On the other hand, many research groups have invented device fusion technologies of electrical and optical devices on a Si substrate. They have co-integrated Si-based CMOS and InGaAs-based optical devices, and Ge-based electrical and optical devices. In addition, chip and wafer bonding techniques through TSV and TOV have been introduced for the co-integration of electrical and optical devices. Such intensive studies will continue to overcome the device-scaling limitation and short-channel effects of a MOS transistor that Si devices have faced using a heterogeneous integration of Si and a high mobility compound semiconductor on the same chip and/or wafer.

Development on the Curriculum of the Department of Semiconductor Technology in Ulsan College (전문대학 반도체 응용과 교육과정 개발)

  • Park, Hyo-Yeol;Kim, Keun-Joo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.4
    • /
    • pp.35-46
    • /
    • 2000
  • Semiconductor technology includes from semiconductor materials, design, fabrication, handling of process equipments, reliability test to packaged semiconductor devices. Our departmental curriculum is organized with 2-years/6-quarters system of Ulsan College: the understanding for the fundamental of semiconductor is carried out in the first academic year and the training for the design skill on semiconductor devices will be focused in the second academic year. The main focus is reflected on the worldwide trend on the design engineering of semiconductor devices and considered for the market establishment on design engineers trained by the lab-oriented practice as well as the fundamental of semiconductor technology.

  • PDF

The Destruction Effects of Semiconductors by High Power Electromagnetic Wave (고출력 과도전자파에 의한 반도체 소자의 파괴효과)

  • Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1638-1642
    • /
    • 2007
  • This paper investigated the destruction effect of the semiconductors by impact of high power electromagnetic wave. The experiments is employed as an open-ended waveguide to study the destruction effects on semiconductor using a 2.45 GHz 600 W Magnetron as a high power electromagnetic wave. The semiconductors are located at a distance of $31cm\sim40cm$ from the open-ended waveguide and are composed of a LED drive circuit for visual discernment. Also the chip condition of semiconductor is observed by SEM(Scanning Electron Microscope) analysis. The semiconductor are damaged by high power electromagnetic wave at about 860 V/m. The SEM analysis of the destructed devices showed onchipwire and bondwire destructions. Based on the result, semiconductor devices should have plan to protect the semiconductor devices form high power electromagnetic wave. And the database from this experiment provides the basis for future investigation.