DOI QR코드

DOI QR Code

Physical issues for the next generation of nano devices

차세대 나노소자에서의 물리적 논점

  • Published : 2014.09.30

Abstract

Advanced process and integration for future semiconductor devices is approaching the physical limit. The new materials with low dimensional structure have recently attracted great attention due to its expandability for the future electronic devices. In order to apply the materials to future semiconductor devices, the control of carrier scattering is critical issue. That is, the carrier scattering with physical quantity in low dimensional structure significantly modulates the device characteristics. We introduce the role of defect in several future semiconductor materials and devices. The analysis of defect in the structure becomes the most important techniques. In particular, surface defect in nano structures totally controls the device characteristics. The changes imply that the metrology field is leading the future industry for semiconductor.

Keywords

References

  1. J.-P. Colinge et al., IEDM Tech. Dig., 595 (1990)
  2. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C. M. Lieber, Nature 441, 489 (2006). https://doi.org/10.1038/nature04796
  3. K. Tomioka, M. Yoshimura, T. Fukui, Nature 488, 189 (2012). https://doi.org/10.1038/nature11293
  4. R. He, P. Yang, Nature Nanotech. 1, 42 (2006). https://doi.org/10.1038/nnano.2006.53
  5. Nat. Nanotech 1, 42 (2006) https://doi.org/10.1038/nnano.2006.53
  6. HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Strait%2C+J+H"Jared H. Strait, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Wang%2C+H"Haining Wang, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Shivaraman%2C+S"Shriram Shivaraman, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Shields%2C+V"Virgil Shields, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Spencer%2C+M" Michael Spencer, and HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Rana%2C+F" Farhan Rana, Nano Lett.11 (11), 4902-4906 (2011) https://doi.org/10.1021/nl202800h
  7. M. A. Seo, J. Yoo, S. A. Dayeh, S. T. Picraux, A. J. Taylor, R. P. Prasankumar, Nano Lett. 12, 6334 (2012). https://doi.org/10.1021/nl303502f
  8. BHYPERLINK "http://www.nature.com/nnano/journal/v6/n3/abs/nnano.2010.279.html" \l "auth-1". Radisavljevic, HYPERLINK "http://www.nature.com/nnano/journal/v6/n3/abs/nnano.2010.279.html" \l "auth-2"A. Radenovic, HYPERLINK "http://www.nature.com/nnano/journal/v6/n3/abs/nnano.2010.279.html" \l "auth-3"J. Brivio, HYPERLINK "http://www.nature.com/nnano/journal/v6/n3/abs/nnano.2010.279.html" \l "auth-4"V. Giacometti, HYPERLINK "http://www.nature.com/nnano/journal/v6/n3/abs/nnano.2010.279.html" \l "auth-5" A. Kis, Nature Nanotech. Volume: 6, Pages: 147-150 Year published: (2011) https://doi.org/10.1038/nnano.2010.279
  9. Jaehyunn Yang, Sunkook Kim, Woong Choi, Sang Han Park, Youngkwon Jung, Mann-Ho Cho, Hyoungsub Kim, ACS Applied Materials & Interfaces 5, 4739 (2013). https://doi.org/10.1021/am303261c
  10. Dung-Sheng Tsai, Keng-Ku Liu, Der-Hsien Lien, Meng-Lin Tsai, Chen-Fang Kang, Chin-An Lin, Lain-Jong Li, and Jr-Hau He, ACS Nano 7, 3905 (2013). https://doi.org/10.1021/nn305301b
  11. HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Salvatore%2C+G+A"Giovanni A. Salvatore, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=M%C3%BCnzenrieder%2C+N"Niko Munzenrieder, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Barraud%2C+C" Clement Barraud, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Petti%2C+L"Luisa Petti, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Zysset%2C+C"Christoph Zysset, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=B%C3%BCthe%2C+L"Lars Buthe, HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Ensslin%2C+K"Klaus Ensslin, and HYPERLINK "http://pubs.acs.org/action/doSearch?ContribStored=Tr%C3%B6ster%2C+G"Gerhard Troster, ACS NANO 7(10) 8809-8815 (2013) https://doi.org/10.1021/nn403248y
  12. Rusen Yan, Jeffrey R. Simpson, Simone Bertolazzi, Jacopo Brivio, Michael Watson, Xufei Wu, Andras Kis, Tengfei Luo, Angela R. Hight Walker, and Huili Grace Xing, ACS Nano 8, 996 (2014).
  13. Chih-Chiang Shen, Yu-Te Hsu, Lain-Jong Li, and Hsiang-Lin Liu, Applied Physics Express 6, 125801 (2013). https://doi.org/10.7567/APEX.6.125801
  14. Ashvini Gyanathan and Yee-Chia Yeo, Jpn. J. Appl. Phys. 5102BD08 (2012)
  15. Byung Joon Choi, Antonio C. Torrezan, Kate J. Norris, Feng Miao, John Paul Strachan, Min-Xian Zhang, Douglas A. A. Ohlberg, Nobuhiko P. Kobayashi, J. Joshua Yang, and R. Stanley Williams, Nano Lett. 13, 3213-3217 (2013) https://doi.org/10.1021/nl401283q
  16. Takaura, N. Ohyanagi, T. Tai, M. Kitamura, M. Kinoshita, M. Akita, K. Morikawa, T. Kato, S. Araidai, M. Kamiya, K. Yamamoto, T. Shiraishi, K., 2014 IEEE conference on microelectronic test structure, Italy, 32 (2014)
  17. Ju Heyuck Baeck, Tae Hyeon Kim, Hye Jin Choi, Kwang Ho Jeong, and Mann-Ho Cho, J. Phys. Chem. C 115, 13462 (2011) https://doi.org/10.1021/jp202433s
  18. T. Siegrist, P. Jost, H. Volker, M.Woda, P. Merkelbach, C. Schlockermann and M.Wuttig, Nature Mat. 10, 202 (2011) https://doi.org/10.1038/nmat2934
  19. S. Soeya, T. Shintani, T. Odaka, R. Kondou, and J. Tominaga, Appl. Phys. Lett. 103, 053103 (2013). https://doi.org/10.1063/1.4817068
  20. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi and J. Tominaga, Nature Nanotech. 6, 501 (2011). https://doi.org/10.1038/nnano.2011.96
  21. 2014 IEEE conference on microelectronic test structure, Italy, p32-37
  22. Ashvini Gyanathan and Yee-Chia Yeo, Japanese Journal of Applied Physics 51, 02BD08, (2012) https://doi.org/10.7567/JJAP.51.02BD08