• 제목/요약/키워드: Semiautomatic segmentation

검색결과 17건 처리시간 0.039초

Differentiation between Glioblastoma and Primary Central Nervous System Lymphoma Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging: Comparison Study of the Manual versus Semiautomatic Segmentation Method

  • Kim, Ye Eun;Choi, Seung Hong;Lee, Soon Tae;Kim, Tae Min;Park, Chul-Kee;Park, Sung-Hye;Kim, Il Han
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권1호
    • /
    • pp.9-19
    • /
    • 2017
  • Background: Normalized cerebral blood volume (nCBV) can be measured using manual or semiautomatic segmentation method. However, the difference in diagnostic performance on brain tumor differentiation between differently measured nCBV has not been evaluated. Purpose: To compare the diagnostic performance of manually obtained nCBV to that of semiautomatically obtained nCBV on glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) differentiation. Materials and Methods: Histopathologically confirmed forty GBM and eleven PCNSL patients underwent 3T MR imaging with dynamic susceptibility contrast-enhanced perfusion MR imaging before any treatment or biopsy. Based on the contrast-enhanced T1-weighted imaging, the mean nCBV (mCBV) was measured using the manual method (manual mCBV), random regions of interest (ROIs) placement by the observer, or the semiautomatic segmentation method (semiautomatic mCBV). The volume of enhancing portion of the tumor was also measured during semiautomatic segmentation process. T-test, ROC curve analysis, Fisher's exact test and multivariate regression analysis were performed to compare the value and evaluate the diagnostic performance of each parameter. Results: GBM showed a higher enhancing volume (P = 0.0307), a higher manual mCBV (P = 0.018) and a higher semiautomatic mCBV (P = 0.0111) than that of the PCNSL. Semiautomatic mCBV had the highest value (0.815) for the area under the curve (AUC), however, the AUCs of the three parameters were not significantly different from each other. The semiautomatic mCBV was the best independent predictor for the GBM and PCNSL differential diagnosis according to the stepwise multiple regression analysis. Conclusion: We found that the semiautomatic mCBV could be a better predictor than the manual mCBV for the GBM and PCNSL differentiation. We believe that the semiautomatic segmentation method can contribute to the advancement of perfusion based brain tumor evaluation.

MPEG-4 부호화를 위한 반자동 영상분할 (Semiautomatic segmentation for MPEG-4 encoding)

  • 김진철;김재환;하종수;김영로;고성제
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.97-100
    • /
    • 2001
  • In this paper, We propose a new semiautomatic segmentation method using spatio-temporal similarity. In the proposed scheme, segmentation is performed using gradual region merging and hi-direction at spatio-temporal refinement. Simulation results show the efficiency of the proposed method in semantic object extraction.

  • PDF

Measurement of Apparent Diffusion Coefficient Values from Diffusion-Weighted MRI: A Comparison of Manual and Semiautomatic Segmentation Methods

  • Kim, Seong Ho;Choi, Seung Hong;Yoon, Tae Jin;Kim, Tae Min;Lee, Se-Hoon;Park, Chul-Kee;Kim, Ji-Hoon;Sohn, Chul-Ho;Park, Sung-Hye;Kim, Il Han
    • Investigative Magnetic Resonance Imaging
    • /
    • 제19권2호
    • /
    • pp.88-98
    • /
    • 2015
  • Purpose: To compare the interobserver and intraobserver reliability of mean apparent diffusion coefficient (ADC) values using contrast-enhanced (CE) T1 weighted image (WI) and T2WI as structural images between manual and semiautomatic segmentation methods. Materials and Methods: Between January 2011 and May 2013, 28 patients who underwent brain MR with diffusion weighted image (DWI) and were pathologically confirmed as having glioblastoma participated in our study. The ADC values were measured twice in manual and semiautomatic segmentation methods using CE-T1WI and T2WI as structural images to obtain interobserver and intraobserver reliability. Moreover, intraobserver reliabilities of the different segmentation methods were assessed after subgrouping of the patients based on the MR findings. Results: Interobserver and intraobserver reliabilities were high in both manual and semiautomatic segmentation methods on CE-T1WI-based evaluation, while interobserver reliability on T2WI-based evaluation was not high enough to be used in a clinical context. The intraobserver reliability was particularly lower with the T2WI-based semiautomatic segmentation method in the subgroups with involved $lobes{\leq}2$, with partially demarcated tumor borders, poorly demarcated inner margins of the necrotic portion, and with perilesional edema. Conclusion: Both the manual and semiautomatic segmentation methods on CE-T1WI-based evaluation were clinically acceptable in the measurement of mean ADC values with high interobserver and intraobserver reliabilities.

Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.901-911
    • /
    • 2021
  • Objective: To evaluate the technical applicability of a semiautomatic three-dimensional (3D) hybrid CT segmentation method for the quantification of right ventricular mass in patients with cardiovascular disease. Materials and Methods: Cardiac CT (270 cardiac phases) was used to quantify right ventricular mass using a semiautomatic 3D hybrid segmentation method in 195 patients with cardiovascular disease. Data from 270 cardiac phases were divided into subgroups based on the extent of the segmentation error (no error; ≤ 10% error; > 10% error [technical failure]), defined as discontinuous areas in the right ventricular myocardium. The reproducibility of the right ventricular mass quantification was assessed. In patients with no error or < 10% error, the right ventricular mass was compared and correlated between paired end-systolic and end-diastolic data. The error rate and right ventricular mass were compared based on right ventricular hypertrophy groups. Results: The quantification of right ventricular mass was technically applicable in 96.3% (260/270) of CT data, with no error in 54.4% (147/270) and ≤ 10% error in 41.9% (113/270) of cases. Technical failure was observed in 3.7% (10/270) of cases. The reproducibility of the quantification was high (intraclass correlation coefficient = 0.999, p < 0.001). The indexed mass was significantly greater at end-systole than at end-diastole (45.9 ± 22.1 g/m2 vs. 39.7 ± 20.2 g/m2, p < 0.001), and paired values were highly correlated (r = 0.96, p < 0.001). Fewer errors were observed in severe right ventricular hypertrophy and at the end-systolic phase. The indexed right ventricular mass was significantly higher in severe right ventricular hypertrophy (p < 0.02), except in the comparison of the end-diastolic data between no hypertrophy and mild hypertrophy groups (p > 0.1). Conclusion: CT quantification of right ventricular mass using a semiautomatic 3D hybrid segmentation is technically applicable with high reproducibility in most patients with cardiovascular disease.

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.102-113
    • /
    • 2019
  • Objective: To assess the accuracy and potential bias of computed tomography (CT) ventricular volumetry using semiautomatic three-dimensional (3D) threshold-based segmentation in repaired tetralogy of Fallot, and to compare them to those of two-dimensional (2D) magnetic resonance imaging (MRI). Materials and Methods: This retrospective study evaluated 32 patients with repaired tetralogy of Fallot who had undergone both cardiac CT and MRI within 3 years. For ventricular volumetry, semiautomatic 3D threshold-based segmentation was used in CT, while a manual simplified contouring 2D method was used in MRI. The indexed ventricular volumes were compared between CT and MRI. The indexed ventricular stroke volumes were compared with the indexed arterial stroke volumes measured using phase-contrast MRI. The mean differences and degrees of agreement in the indexed ventricular and stroke volumes were evaluated using Bland-Altman analysis. Results: The indexed end-systolic (ES) volumes showed no significant difference between CT and MRI (p > 0.05), while the indexed end-diastolic (ED) volumes were significantly larger on CT than on MRI (93.6 ± 17.5 mL/m2 vs. 87.3 ± 15.5 mL/m2 for the left ventricle [p < 0.001] and 177.2 ± 39.5 mL/m2 vs. 161.7 ± 33.1 mL/m2 for the right ventricle [p < 0.001], respectively). The mean differences between CT and MRI were smaller for the indexed ES volumes (2.0-2.5 mL/m2) than for the indexed ED volumes (6.3-15.5 mL/m2). CT overestimated the stroke volumes by 14-16%. With phase-contrast MRI as a reference, CT (7.2-14.3 mL/m2) showed greater mean differences in the indexed stroke volumes than did MRI (0.8-3.3 mL/m2; p < 0.005). Conclusion: Compared to 2D MRI, CT ventricular volumetry using semiautomatic 3D threshold-based segmentation provides comparable ES volumes, but overestimates the ED and stroke volumes in patients with repaired tetralogy of Fallot.

계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발 (Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model)

  • 김예빈;김동성
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

양방향 개인방송 서비스를 위한 동영상 객체분할 시스템의 구현 (Implementation of Video Object Segmentation System for Interactive Personal Broadcasting Service)

  • 유홍연;전도영;김민성;홍성훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.17-19
    • /
    • 2007
  • This paper describe an interactive video object segmentation tool which can be used to generate MPEG-4 video object planes for multimedia broadcasting and enables content based functionalities. In order to apply these functionalities, each frame of video sequence should be represented in terms of video objects. Semiautomatic segmentation can be thought of as a user-assisted segmentation technique. A user can initially mark objects of interest around the real object boundaries. Then the user-guided and selected objects are continuously separated from the unselected areas though time evolution in the image sequences. We proposed method shows very promising result and this encourages the development of object based video editing system.

  • PDF

고속의 세미오토매틱 비디오객체 추적 알고리즘 (A Fast Semiautomatic Video Object Tracking Algorithm)

  • 이종원;김진상;조원경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.291-294
    • /
    • 2004
  • Semantic video object extraction is important for tracking meaningful objects in video and object-based video coding. We propose a fast semiautomatic video object extraction algorithm which combines a watershed segmentation schemes and chamfer distance transform. Initial object boundaries in the first frame are defined by a human before the tracking, and fast video object tracking can be achieved by tracking only motion-detected regions in a video frame. Experimental results shows that the boundaries of tracking video object arc close to real video object boundaries and the proposed algorithm is promising in terms of speed.

  • PDF

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

사용자 조정 풍선 : Visible Human의 다리 근육 분할의 적용 (User-steered balloon: Application to Thigh Muscle Segmentation of Visible Human)

  • 이정호;김동성;강흥식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.266-274
    • /
    • 2000
  • 진단이나 인체 모델의 형성에 있어서 필수적인 의료 영상의 분할(Segmentation)은 정확성을 얻기 위해 대부분 수작업에 의해 수행되고 있다. 하지만 수작업은 많은 시간이 소비되며, 같은 영역을 재분할했을 때 동일한 결과를 얻기가 어렵다. 이를 해결하기 위해 본 논문에서는 사용하기 편리하면서 수작업의 정확성을 유지할 수 있는 반자동화된 영상 분할방법을 제안한다. 제안된 방법은 먼저 사용자로부터 분할하고자 하는 영역의 경계에 해당하는 제어점을 몇 개 입력받고 제어점들간의 최소 비용 경로를 연결하여 외곽선을 획득하는 Live-wire를 수행한다. 하지만 Live-wire는 톱날 모양의 외곽선을 형성하거나 영역의 침식을 발생시키므로, 이러한 문제점을 해결하기 위해서 획득된 분할 영역의 외곽선을 재설정시킨 후 이것을 장벽으로 사용하여 SRG(Seeded Region Growing)을 수행하였다. 제안된 User-steered balloon방법은 Live-wire의 문제점을 해결할 뿐만 아니라, SRG가 성장시 새어나가는(Leakage) 문제점도 해결할 수 있다. 본 논문에서는 제안된 방법을 가지고 Visible Human의 다리 근육에 대한 분할을 수행하여 제안된 방법을 검증하였다.

  • PDF