Abstract
Medical image segmentation, which is essential in diagnosis and 3D reconstruction, is performed manually in most applications to produce accurate results. However, manual segmentation requires lots of time to segment, and is difficult even for the same operator to reproduce the same segmentation results for a region. To overcome such limitations, we propose a convenient and accurate semiautomatic segmentation method. The proposed method initially receives several control points of an ROI(Region of Interest Region) from a human operator, and then finds a boundary composed of a minimum cost path connecting the control points, which is the Live-wire method. Next, the boundary is modified to overcome limitations of the Live-wire, such as a zig-zag boundary and erosion of an ROI. Finally, the region is segmented by SRG(Seeded Region Growing), where the modified boundary acts as a blockage to prevent leakage. The proposed User-steered balloon method can overcome not only the limitations of the Live-wire but also the leakage problem of the SRG. Segmentation results of thigh muscles of the Visible Human are presented.
진단이나 인체 모델의 형성에 있어서 필수적인 의료 영상의 분할(Segmentation)은 정확성을 얻기 위해 대부분 수작업에 의해 수행되고 있다. 하지만 수작업은 많은 시간이 소비되며, 같은 영역을 재분할했을 때 동일한 결과를 얻기가 어렵다. 이를 해결하기 위해 본 논문에서는 사용하기 편리하면서 수작업의 정확성을 유지할 수 있는 반자동화된 영상 분할방법을 제안한다. 제안된 방법은 먼저 사용자로부터 분할하고자 하는 영역의 경계에 해당하는 제어점을 몇 개 입력받고 제어점들간의 최소 비용 경로를 연결하여 외곽선을 획득하는 Live-wire를 수행한다. 하지만 Live-wire는 톱날 모양의 외곽선을 형성하거나 영역의 침식을 발생시키므로, 이러한 문제점을 해결하기 위해서 획득된 분할 영역의 외곽선을 재설정시킨 후 이것을 장벽으로 사용하여 SRG(Seeded Region Growing)을 수행하였다. 제안된 User-steered balloon방법은 Live-wire의 문제점을 해결할 뿐만 아니라, SRG가 성장시 새어나가는(Leakage) 문제점도 해결할 수 있다. 본 논문에서는 제안된 방법을 가지고 Visible Human의 다리 근육에 대한 분할을 수행하여 제안된 방법을 검증하였다.