References
- Naidich TP, Epstein F, Lin JP, Kricheff II, Hochwald GM. Evaluation of pediatric hydrocephalus by computed tomography. Radiology 1976;119:337-345 https://doi.org/10.1148/119.2.337
- Yabuuchi H, Kamitani T, Sagiyama K, Yamasaki Y, Matsuura Y, Hino T, et al. Clinical application of radiation dose reduction for head and neck CT. Eur J Radiol 2018;107:209-215 https://doi.org/10.1016/j.ejrad.2018.08.021
- Sze RW, Ghioni V, Weinberger E, Seidel KD, Ellenbogen RG. Rapid computed tomography technique to measure ventricular volumes in the child with suspected ventriculoperitoneal shunt failure II: clinical application. J Comput Assist Tomogr 2003;27:668-673 https://doi.org/10.1097/00004728-200309000-00002
- Yamin G, Cheecharoen P, Goel G, Sung A, Li CQ, Chang YA, et al. Automated CT registration tool improves sensitivity to change in ventricular volume in patients with shunts and drains. Br J Radiol 2020;93:20190398
- Wilk R, Kluczewska E, Syc B, Bajor G. Normative values for selected linear indices of the intracranial fluid spaces based on CT images of the head in children. Pol J Radiol 2011;76:16-25
- Ragan DK, Cerqua J, Nash T, McKinstry RC, Shimony JS, Jones BV, et al. The accuracy of linear indices of ventricular volume in pediatric hydrocephalus: technical note. J Neurosurg Pediatr 2015;15:547-551 https://doi.org/10.3171/2014.10.PEDS14209
- Mardini S, See LC, Lo LJ, Salgado CJ, Chen YR. Intracranial space, brain, and cerebrospinal fluid volume measurements obtained with the aid of three-dimensional computerized tomography in patients with and without Crouzon syndrome. J Neurosurg 2005;103(3 Suppl):238-246 https://doi.org/10.3171/ped.2005.103.3.0238
- Liu J, Huang S, Ihar V, Ambrosius W, Lee LC, Nowinski WL. Automatic model-guided segmentation of the human brain ventricular system from CT images. Acad Radiol 2010;17:718-726 https://doi.org/10.1016/j.acra.2010.02.013
- Multani JS, Oermann EK, Titano J, Mascitelli J, Nicol K, Feng R, et al. Quantitative computed tomography ventriculography for assessment and monitoring of hydrocephalus: a pilot study and description of method in subarachnoid hemorrhage. World Neurosurg 2017;104:136-141 https://doi.org/10.1016/j.wneu.2017.04.107
- Goo HW. Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of fallot: comparison with cardiac magnetic resonance imaging. Korean J Radiol 2019;20:102-113 https://doi.org/10.3348/kjr.2018.0237
- Goo HW. Volumetric severity assessment of Ebstein anomaly using three-dimensional cardiac CT: a feasibility study. Cardiovasc Imaging Asia 2019;3:61-67 https://doi.org/10.22468/cvia.2019.00052
- Yang DH, Goo HW. Pediatric 16-slice CT protocol: radiation dose and image quality. J Korean Radiol Soc 2008;59:333-347 https://doi.org/10.3348/jkrs.2008.59.5.333
- Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 2012;13:1-11 https://doi.org/10.3348/kjr.2012.13.1.1
- Greess H, Lutze J, Nomayr A, Wolf H, Hothorn T, Kalender WA, et al. Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 2004;14:995-999 https://doi.org/10.1007/s00330-004-2301-9
- Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology 2012;262:191-198 https://doi.org/10.1148/radiol.11110470
- Lee KB, Goo HW. Quantitative image quality and histogram-based evaluations of an iterative reconstruction algorithm at low-to-ultralow radiation dose levels: a phantom study in chest CT. Korean J Radiol 2018;19:119-129 https://doi.org/10.3348/kjr.2018.19.1.119
- Cho HH, Lee SM, You SK. Pediatric head computed tomography with advanced modeled iterative reconstruction: focus on image quality and reduction of radiation dose. Pediatr Radiol 2020;50:242-251 https://doi.org/10.1007/s00247-019-04532-z
- Huff TJ, Ludwig PE, Salazar D, Cramer JA. Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume. Int J Comput Assist Radiol Surg 2019;14:1923-1932 https://doi.org/10.1007/s11548-019-02038-5
- Klimont M, Flieger M, Rzeszutek J, Stachera J, Zakrzewska A, Jon' czyk-Potoczna K. Automated ventricular system segmentation in paediatric patients treated for hydrocephalus using deep learning methods. Biomed Res Int 2019;2019:3059170
- Kamochi H, Sunaga A, Chi D, Asahi R, Nakagawa S, Mori M, et al. Growth curves for intracranial volume in normal Asian children fortify management of craniosynostosis. J Craniomaxillofac Surg 2017;45:1842-1845 https://doi.org/10.1016/j.jcms.2017.08.026
- Patel DM, Tubbs RS, Pate G, Johnston JM Jr, Blount JP. Fast-sequence MRI studies for surveillance imaging in pediatric hydrocephalus. J Neurosurg Pediatr 2014;13:440-447 https://doi.org/10.3171/2014.1.PEDS13447
- Lee E, Goo HW, Lee JY. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children. Pediatr Radiol 2015;45:1282-1292 https://doi.org/10.1007/s00247-015-3331-y