• Title/Summary/Keyword: Semantic retrieval

Search Result 398, Processing Time 0.025 seconds

Learning Probabilistic Kernel from Latent Dirichlet Allocation

  • Lv, Qi;Pang, Lin;Li, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2527-2545
    • /
    • 2016
  • Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.

A Study on Retrieval System of Course Materials (강의자원 검색시스템에 관한 연구)

  • Nam, Young-Joon;Yim, Young-Sun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.21 no.4
    • /
    • pp.205-215
    • /
    • 2010
  • This study has extracted the basic component of the Library Course Pages through case studies of the Library Course Pages Service, and examined the staus quo of the Open Course Ware(OCW) for the sharing of the course materials. The study has also designed and established a ontology-based retrieval system model that is capable of semantic-based retrieval of the course materials in colleges. A comparison between and analysis of the past keyword search results was conducted to evaluate the model. Through evaluation, the study concluded that the ontology-based system was more effective than the keyword search method in both retrieval result and material sharing between the institutions.

A Document Ranking Method by Document Clustering Using Bayesian SoM and Botstrap (베이지안 SOM과 붓스트랩을 이용한 문서 군집화에 의한 문서 순위조정)

  • Choe, Jun-Hyeok;Jeon, Seong-Hae;Lee, Jeong-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2108-2115
    • /
    • 2000
  • The conventional Boolean retrieval systems based on vector spae model can provide the results of retrieval fast, they can't reflect exactly user's retrieval purpose including semantic information. Consequently, the results of retrieval process are very different from those users expected. This fact forces users to waste much time for finding expected documents among retrieved documents. In his paper, we designed a bayesian SOM(Self-Organizing feature Maps) in combination with bayesian statistical method and Kohonen network as a kind of unsupervised learning, then perform classifying documents depending on the semantic similarity to user query in real time. If it is difficult to observe statistical characteristics as there are less than 30 documents for clustering, the number of documents must be increased to at least 50. Also, to give high rank to the documents which is most similar to user query semantically among generalized classifications for generalized clusters, we find the similarity by means of Kohonen centroid of each document classification and adjust the secondary rank depending on the similarity.

  • PDF

A Study on the Development of Ontology based on the Jewelry Brand Information (귀금속.보석 상품정보 온톨로지 구축에 관한 연구)

  • Lee, Ki-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.247-256
    • /
    • 2008
  • This research is to develop product retrieval system through simplified communication by applying intelligent agent technology based on automatically created domain ontology to present solution on problems with e-commerce system which searches in the web documents with a simple keyword. Ontology development extracts representative term based on classification information of international product classification code(UNSPSC) and jewelry websites that is applied to analogy relationship thesaurus to establish standardized ontology. The intelligent agent technology is applied to retrieval stage to support efficiency of information collection for users by designing and developing e-commerce system supported with semantic web. Moreover, it designs user profile to personalized search environment and provide personalized retrieval agent and retrieval environment with inference function to make available with fast information collection and accurate information search.

  • PDF

Survey of Automatic Query Expansion for Arabic Text Retrieval

  • Farhan, Yasir Hadi;Noah, Shahrul Azman Mohd;Mohd, Masnizah
    • Journal of Information Science Theory and Practice
    • /
    • v.8 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Information need has been one of the main motivations for a person using a search engine. Queries can represent very different information needs. Ironically, a query can be a poor representation of the information need because the user can find it difficult to express the information need. Query Expansion (QE) is being popularly used to address this limitation. While QE can be considered as a language-independent technique, recent findings have shown that in certain cases, language plays an important role. Arabic is a language with a particularly large vocabulary rich in words with synonymous shades of meaning and has high morphological complexity. This paper, therefore, provides a review on QE for Arabic information retrieval, the intention being to identify the recent state-of-the-art of this burgeoning area. In this review, we primarily discuss statistical QE approaches that include document analysis, search, browse log analyses, and web knowledge analyses, in addition to the semantic QE approaches, which use semantic knowledge structures to extract meaningful word relationships. Finally, our conclusion is that QE regarding the Arabic language is subjected to additional investigation and research due to the intricate nature of this language.

Reputation Analysis of Document Using Probabilistic Latent Semantic Analysis Based on Weighting Distinctions (가중치 기반 PLSA를 이용한 문서 평가 분석)

  • Cho, Shi-Won;Lee, Dong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.632-638
    • /
    • 2009
  • Probabilistic Latent Semantic Analysis has many applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. In this paper, we propose an algorithm using weighted Probabilistic Latent Semantic Analysis Model to find the contextual phrases and opinions from documents. The traditional keyword search is unable to find the semantic relations of phrases, Overcoming these obstacles requires the development of techniques for automatically classifying semantic relations of phrases. Through experiments, we show that the proposed algorithm works well to discover semantic relations of phrases and presents the semantic relations of phrases to the vector-space model. The proposed algorithm is able to perform a variety of analyses, including such as document classification, online reputation, and collaborative recommendation.

Semantic Representation of Moving Objectin Video Data Using Motion Ontology (Motion Ontology를 이용한 비디오내 객체 움직임의 의미표현)

  • Shin, Ju-Hyun;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • As the value of the multimedia data is getting high, the study on the semantic recognition and retrieval about the multimedia information is strongly demanded. In this paper, we build the motion ontology and adopt it for representing the meaning of the moving objects in video data. By referencing the WordNet structure, we extend its semantic meaning based on the reclassification of motion verbs, which are used to represent the semantic meaning of moving objects. The represented information is receded in OWL/RDF(S). Here, we could expect the 'Is-A' and 'Equivalent' reasoning of the data as we use the ontologies. And the semantic representation about the moving objects is possible through the video annotation using ontology. And we tested the accuracy of the system comparing with the key-word based system. As a result, we could get the approximately 10% improvement of the system performance.

  • PDF

An Implementation of Inference-Based Web Ontology for Intelligent Image Retrieval System (지능형 이미지 검색 시스템을 위한 추론 기반의 웹 온톨로지 구축)

  • Kim, Su-Kyoung;Ahn, Kee-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.119-147
    • /
    • 2007
  • Actually a diffusion of a semantic web application and utilization are situations insufficient extremely. Technology most important in semantic web application is construction of the ontology which contents itself with characteristics of semantic web. Proposed a suitable a method of building web ontology for characteristics or semantic web and web ontology as we compared the existing ontology construction ana ontology construction techniques proposed for web ontology construction, and we analyzed. And modeling old ontology to bases to description logic and the any axiom rule that used an expression way of SWRL, and established inference-based web ontology according to proposed ways. Verified performance of ontology established through ontology inference experiment. Also established an web ontology-based intelligence image retrieval system, to experiment systems for performance evaluation of established web ontology, and present an example of implementation of a semantic web application and utilization. Demonstrated excellence of a semantic web application to be based on ontology through inference experiment of an experiment system.

A Study Nuenal Model of Concept Retrieval (개념 검색의 신경회로망 모델에 관한 연구)

  • Kauh, Yong-Hoon;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.450-456
    • /
    • 1990
  • In this paper, production system is implemented with the inferential neural network model using semantic network and directed graph. Production system can be implemented with the transform of knowledge representation in production system into semantic network and of semantic network into directed graph, because directed graphs can be expressed by neural matrices. A concept node should be defined by the state vector to calculated the concepts expressed by matrices. The expressional ability of neunal network depends on how the state vector is defined. In this study, state vector is overlapped and each overlapping part acts as a inheritant of concept.

  • PDF

A Study on the Design of a Topic Map-based Retrieval System for the Academic Administration Records of Universities (대학 학사행정 기록물의 토픽맵 기반 검색시스템 설계에 관한 연구)

  • Shin, Jiyu;Jung, Youngmi
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.16 no.1
    • /
    • pp.175-193
    • /
    • 2016
  • A topic map was designed as an efficient information retrieval method that is optimized for classification, organization, and navigation through the use of a semantic link network above information resources. With this, this study aims to design a topic map-based university archives retrieval system to provide the relevant information retrieval. For this study, electronic records that relate to the academic administration within two years of D university were collected, and topic map editing was carried out with Ontopia Omnigator. Topics were classified according to their functional analysis of academic administration. In the end, the number of topics was finalized as 626, with 6 types in general: academic work, staff, college register, student, university, etc. Association was separated into six types as well, which were formed with consideration to the relationships among topics. In addition, there are seven occurrence types: register class, register number, register date, receiver, title, creator, and identifier. It is expected that the associative nature of the designed topic map-based retrieval system in this study will make navigation of large records easy and allow incidental discovery of knowledge.