• Title/Summary/Keyword: Selective Transistor

Search Result 39, Processing Time 0.024 seconds

An Excimer Laser Annealed Poly-Si Thin Film Transistor Designed for Reduction of Grainboundary Effect (채널에 단일 그레인 경계를 갖는 다결정 실리콘박막 트랜지스터)

  • 전재홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.559-561
    • /
    • 2003
  • We report a new excimer laser annealing method which successfully results in a single grain boundary formation in the channel of polycrystalline silicon thin film transistor. The proposed method is based on lateral grain growth and employs aluminum patterns which act as selective beam mask and lateral heat sink. The maximum grain size obtained by the proposed method is about 1.6${\mu}{\textrm}{m}$ in the length. The grainboundaries should be arranged parallel with the direction of current flow for the best device performance, so we propose a new device fabrication method and a new poly-Si TFT structure. Poly-Si TFT fabricated by the proposed method exhibits considerably improved electrical characteristics, such as high field effect mobility exceeding 240 $cm^2$/Vsec.

Forming Low-Resistivity Electrodes of Thin Film Transistors with Selective Electroless Plating Process

  • Chiang, Shin-Chuan;Chuang, Bor-Chuan;Tsai, Chia-Hao;Chang, Shih-Chieh;Hsiao, Ming-Nan;Huang, Yuan-Pin;Huang, Chih-Ya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.597-600
    • /
    • 2006
  • The silver gate and source/drain electrodes for an a-Si thin film transistor were fabricated by the selective electroless plating (SELP) process. Relevant physical properties including taper angle, uniformity and resistivity are investigated. The Ag layer was about 150nm to 250nm thick, the resistivity less than $3{\times}10^{-6}$ Ohm-cm and the taper angle 45'-60' and the nonuniformity less than 10% on G2 substrates. The transfer characteristics with the Ag gate, and source/drain electrodes respectively possessed good field effect mobility similar to conventionally fabricated a-Si TFTs. This process provided low resistivity, low cost and ease of processing.

  • PDF

ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane

  • Chung, Mi-Kyung;Kim, Seong-Wan;Lee, Sang-Sik;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • This paper describes the development of a glucose biosensor based on ion sensitive field effect transistor(ISFET) with a palladium(Pd) modified ion sensing membrane. By adopting Pd as a hydrogen sensitive layer and integrating a screen-printed reference electrode, the sensitivity and stability were considerably improved due to the high permeability and selectivity of the Pd hydrogen selective membrane. This paper suggests a new approach for realizing portable and highly sensitive glucose sensors for diagnosing and treating diabetes mellitus.

Selective Operating Preamplifier Circuit for Low Voltage Static Random Access Memory (저전압 에스램용 선별 동작 사전 증폭 회로)

  • Jeong, Hanwool
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.309-314
    • /
    • 2021
  • The proposed preamplifier for the static random access memory reduces the time required for the sense amplifier enable during the read operation by 55%, which leads to a significant speed up the total spped. This is attirbuted to the novel circuit techqniue that cancels out the transistor mismatch which is induced by the process variation. In addition, a selective enable circuit for preamplifier circuit is proposed, so the proposed preamplifier is enabled only when it is required. Accordingly the energy overhead is limited below 4.45%.

Ink-Jet Printed Oxide Semiconductor Transistors

  • Jeong, Young-Min;Kim, Dong-Jo;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.806-808
    • /
    • 2008
  • We studied ink-jet printing for selective deposition of soluble oxide semiconductor to fabricate transistor. Sol-gel derived ZTO solution was synthesized for ink-jet printable solution. Transistors were produced by printing oxide layer between ITO electrodes. We demonstrated that ink-jet printed ZTO transistors work well and surface treatment significantly influences device performance.

  • PDF

Three-Dimensional Selective Oxidation Fin Channel MOSFET Based on Bulk Silicon Wafer (벌크 실리콘 기판을 이용한 삼차원 선택적 산화 방식의 핀 채널 MOSFET)

  • Cho, Young-Kyun;Nam, Jae-Won
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.159-165
    • /
    • 2021
  • A fin channel with a fin width of 20 nm and a gradually increased source/drain extension regions are fabricated on a bulk silicon wafer by using a three-dimensional selective oxidation. The detailed process steps to fabricate the proposed fin channel are explained. We are demonstrating their preliminary characteristics and properties compared with those of the conventional fin field effect transistor device (FinFET) and the bulk FinFET device via three-dimensional device simulation. Compared to control devices, the three-dimensional selective oxidation fin channel MOSFET shows a higher linear transconductance, larger drive current, and lower series resistance with nearly the same scaling-down characteristics.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications

  • Park, Chang-Hyun;Oh, Myung-Hwan;Kang, Hee-Sung;Kang, Ho-Kyu
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.575-582
    • /
    • 2004
  • Fully-depleted silicon-on-insulator (FD-SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the single- raised (SR) and double-raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self-heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self-heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a $1.1\;{\mu}m^2$ 6T-SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra-thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.

  • PDF

Design of a Small-Area, Low-Power, and High-Speed 128-KBit EEPROM IP for Touch-Screen Controllers (터치스크린 컨트롤러용 저면적, 저전력, 고속 128Kb EEPROMIP 설계)

  • Cho, Gyu-Sam;Kim, Doo-Hwi;Jang, Ji-Hye;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2633-2640
    • /
    • 2009
  • We design a small-area, low-power, and high-speed EEPROM for touch screen controller IC. As a small-area EEPROM design, a SSTC (side-wall selective transistor) cell is proposed, and high-voltage switching circuits repeated in the EEPROM core circuit are optimized. A digital data-bus sensing amplifier circuit is proposed as a low-power technology. For high speed, the distributed data-bus scheme is applied, and the driving voltage for both the EEPROM cell and the high-voltage switching circuits uses VDDP (=3.3V) which is higher than the logic voltage, VDD (=1.8V), using a dual power supply. The layout size of the designed 128-KBit EEPROMIP is $662.31{\mu}m{\times}1314.89{\mu}m$.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구)

  • Choi, Giheon;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2020
  • We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.