• Title/Summary/Keyword: Seismic reflection method

Search Result 98, Processing Time 0.026 seconds

The Application of Geophysical Prospecting for Detecting Substructure and Boundary of Layer In Limestone Area (석회암 지역의 기반암 및 경계면 조사를 위한 지구물리 탐사법의 적용)

  • Suh, Beak-Su;Lee, Duk-Jae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.285-293
    • /
    • 2000
  • In 1970's, the analysis of shallow substructure was the interests of geological engineering and environmental problems. And seismic refraction method was applied to detect those structures. From 1980's, digital electric industry is rapidly developed and high resolution prospecting equipment is supplied. And seismic reflection method is applied to achieve various data gathering and data analysis. In this study, geophysical prospecting method is applied to calculate the basic data of limestone yield production. Seismic shallow reflection method is used to detect the depth of bedrock and electrical resistivity method is used to detect of limestone layer boundary.

  • PDF

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data (합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

The application of shallow seismic reflection method for Chechon limestone area (제천 석회석 지역의 탄성파 반사법의 적용)

  • Suh, Beak-Soo;Lee, Duk-Jae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.303-309
    • /
    • 2000
  • Seismic reflection method is applied to detect shallow location of limestone in Chechon area. The data using hammer source is compared with that of weight drop. Small size hammer and weight-drop are used as energy source and 100Hz geophones are used for data aquisition. Data processing is conducted utilizing the available processing technique of "Geobit", which is seismic data processing software developed by KIGAM. The result of above data processing, the velocity of topsoil layer is 1,250m/sec. The velocity of this area is higher than other area because loading trucks pass this area and make this layer compact. And in limestone area, hammer is proposed to energy source instead of weight drop because the energy propagates the layer very well.

  • PDF

Application of Seismic Reflection Method in the tunnel of Youngdong Railroad(Mt. Dongbaek~Dokye) (영동선 동백산-도계간 터널내 반사법 탄성파탐사 적용사례)

  • 김용일;윤영훈;조상국;양종화;김장수;이내용
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.696-708
    • /
    • 2002
  • Seismic Reflection Methods(TSP, HSP) have been applied in the junction between 2nd Adit and Main Tunnel (Solan Tunnel) of Youngdiong Railroad(Mt. Dongbaek∼Dokye). In this paper, methods and case study will be introduced to predict discontinuties in the tunnel before excavation by the Seismic Reflection Methods(TSP, HSP)and secure construction stability of the tunnel in blasting and excavation.

  • PDF

A strategy to enhance the efficiency of land seismic reflection method via controlling seismic energy radiation pattern. (지면 탄성파 반사법의 효율성 향상을 위한 탄성파 발생원 에너지 방사형 변조기법)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.807-814
    • /
    • 2004
  • Land seismic reflection survey has been increasingly demanded in various civil engineering works because of its own ability to delineate layers, water table, to detect cavities or fracture zones, to estimate seismic velocities of each layer. However, our shallow subsurface structures are very complex. The relatively thin layer(mostly soil) to the wavelength directly followed by a basic rock with high impedance used to generate complicated surface waves, kind of channel waves with high amplitude that is dominate in entire seismograms and hence the useful reflection events will be almost hopelessly immersed in the undesired surface waves. Thus, it would seem that the use of traditional seismic survey could not be likely to provide in itself a satisfactory information about our exploration targets. This paper hence introduces an efficient measuring strategy illustrating a properly controlled arrangement of the vertical single force sources commonly used, yielding a very sharply elongated form of P-energy with a minimum of S radiation energy, what we call, P-beam source. Abundant experiments of physical modeling showed that in that way the surface waves could be enormously reduced and the reflection events would be additive and thus reinforced. Examples of field data are also illustrated. The contribution of P-beam source will be great in civil engineering area as well as in general geological exploration area.

  • PDF

A Study on the Shallow Marine Site Survey using Seismic Reflection and Refraction Method (탄성파 반사법 및 굴절법을 이용한 천해저 지반조사에 대한 연구)

  • Shin, Sung-Ryul;Kim, Chan-Su;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • It is very important to estimate the physical properties of survey area and delineate the geological basement in marine site survey for the design of offshore structures. For the purpose of providing high quality data by means of engineering site survey, it is necessary to apply several survey techniques and carry out the integrated interpretation to each other. In this study, we applied single channel seismic reflection method and OBC (Ocean Bottom Cable) type seismic refraction method at shallow marine. We used a dual boomer-single channel streamer as a source-receiver in seismic reflection survey and airgun source-the developed OBC type streamer in seismic refraction survey. We made 24 channels OBC type streamer which has 4m channel interval and each channel is composed of single hydrophone and preamplifier. We tested the field applicability of the proposed method and applied the typical seismic data processing methods to the obtained reflection data in order to enhance the data quality and image resolution. In order to estimate the geological velocity distribution from refraction data, seismic refraction tomography technique was applied. Therefore, we could successfully perform time-depth conversion using the velocity information as an integrated interpretation. The proposed method could provide reliable geologic information such as sediment layer thickness and 3D basement depth map.

Seismic refraction tomographic inversion using the initial velocity model from marine reflection data (해양 반사법 탐사자료의 초기속도 모델을 이용한 굴절 토모그래피 역산)

  • Lee, Yong-Jae;Kim, Won-Sik;Lee, Ho-Young;Yoo, Dong-Geun;Cho, Chang-Soo;Kim, Ji-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.317-322
    • /
    • 2007
  • Seismic exploration is divided by reflection and refraction method greatly, and reflection method can analyze complicated underground structure in the basis high resolution image, and refraction method can grasp the velocity structure of underground accurately. This thesis confirmed application of mixed exploration techniques using advantages of reflection and refraction. Reflection data processing applied conventional technique, and inversion of refraction data applied travel time tomographic technique that using SIRT method. Also, could establish initial information in model variable and improved the result of inversion by restricting model parameter value and dimension of area. Confirmed efficient fact in sequence and velocity structure grasping by utilizing accurate initial velocity model made out on the basis of marine reflection data, and mixed exploration technique using reflection and refraction have propriety that can trust in field application.

  • PDF

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

A Study of Frequency Domain Analysis of Impact-wave for Detecting of Structural Defects in the Concrete Structure (구조물의 안전진단을 위한 충격파의 주파수 영역 탐사에 관한 연구)

  • Kim, Hyoung-Jun;Lee, Sang-Chul;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.115-120
    • /
    • 2005
  • Impact seismic wave method is a method for non-destructive testing of concrete structure using of stress wave which is propagate and reflected from internal flaws within concrete structure and external surface. In this study, we performed frequency domain method using impact seismic wave test for safety diagnosis of civil engineering structure. And reflection method which is used for one-dimensional target such as tunnel lining and transmission method are compared with each other.

  • PDF

Estimating attenuation in methane hydrate bearing sediments from surface seismic data (메탄하이드레이트 부존층에서의 지진파 감쇠치 산출)

  • Lee, Kwang-Ho;Matsushima, Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.28-33
    • /
    • 2009
  • Methane hydrates are considered important in terms of their effect on global warming and as potential energy resources. Now, mainly the presence of a BSR and seismic velocity are used for estimation of methane hydrate concentration in the seismic reflection survey. But recent studies on seismic attenuation show that it can be used also to estimate methane hydrates concentration. In this study, we tried to estimate attenuation from 2D seismic reflection data acquired at Nankai Trough in Japan and analyzed attenuation properties in methane hydrate bearing sediments. Seismic attenuation estimated by QVO method in an offset range $125{\sim}1,575m$. We observed high attenuation in methane hydrate bearing sediments over BSR in a frequency range of 30-70Hz. Thus, this result demonstrates that seismic reflection wave within this frequency range are affected significantly by the existence of methane hydrate concentration zone.

  • PDF