DOI QR코드

DOI QR Code

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data

합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성

  • Kim, Ki Young (Division of Geology and Geophysics, Kangwon National University) ;
  • Park, Iseul (Department of Geological Sciences, University of Canterbury) ;
  • Byun, Joongmoo (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 김기영 (강원대학교 지질.지구물리학부) ;
  • 박이슬 (캔터베리대학교 지질과학과) ;
  • 변중무 (한양대학교 자원환경공학과)
  • Received : 2018.03.27
  • Accepted : 2018.05.28
  • Published : 2018.05.31

Abstract

To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

지진파 간섭법으로 구한 심부 가상 반사파 영상 특성 분석을 위하여, 벌림 범위, 무작위 잡음, 손실 자료, 정적 이상 등의 요인이 간섭파 단면에 미치는 영향을 분석하였다. 중심주파수 5 Hz의 지표 점샘에서 발생한 지진파 입자운동속도의 수직성분을 1 km 간격으로 100 m 깊이에 매설된 201개 수신기에서 유한차분법으로 계산하였다. 모든 합성지진파 트레이스의 쌍을 교차 상관하여 간섭파를 구하였고, 통상적인 반사파 처리방법으로 반사단면을 작성하였다. 분석결과, 반사파 간섭법의 광각반사에 따른 문제점들은 최대 벌림범위를 설정하여 최소화할 수 있었으며, 무작위 잡음, 손실 자료, 정적 이상 등은 수직 시간차 보정시 이완뮤트의 영향으로 가상 샘으로부터 퍼져나가는 형태의 처리잡음이 발생함이 밝혀졌다. 이들 처리잡음의 수준은 공통 중간점 겹쌓기 단면상에서 배경잡음의 크기 및 지속시간에 가장 민감하며, 손실된 자료의 수와 정적 이상의 증가에 따라서도 증가하는 특성을 보인다.

Keywords

References

  1. Bakulin, A., and Calvert, R., 2004, Virtual source: New method for imaging and 4D below complex overburden, 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2477-2480.
  2. Bakulin, A., and Calvert, R., 2006, The virtual source method: Theory and case study, Geophysics, 71(4), SI139-SI150. https://doi.org/10.1190/1.2216190
  3. Bakulin, A., Mateeva, A., Mehta, K., Jorgensen, P., Ferrandis, J., Herhold, I. S., and Lopez, J., 2007, Virtual source appli- cations to imaging and reservoir monitoring, The Leading Edge, 26(6), 732-740. https://doi.org/10.1190/1.2748490
  4. Bharadwaj, P., Schuster, G., Mallinson, I., and Dai, W., 2012, Theory of supervirtual refraction interferometry, Geophys. J. Inter., 188(1), 263-273. https://doi.org/10.1111/j.1365-246X.2011.05253.x
  5. Campillo, M., and Paul, A., 2003, Long-range correlations in the diffuse seismic coda, Science, 299(5606), 547-549. https://doi.org/10.1126/science.1078551
  6. Cho, H.-M., Baag, C.-E., Lee, J. M., Moon, W. M., Jung, H., and Kim, K. Y. 2013, P- and S-wave velocity model along crustal scale refraction and wide-angle reflection profile in the southern Korean Peninsula, Tectonophysics, 582(1), 84-100. https://doi.org/10.1016/j.tecto.2012.09.025
  7. Claerbout, J., 1968, Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33(2), 264-269. https://doi.org/10.1190/1.1439927
  8. Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Amer., 67(6), 1529-1540.
  9. de Hoop, A. T., 1988, Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation, J. Acoust. Soc. Am., 84(5), 1877-1882. https://doi.org/10.1121/1.397152
  10. Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K., 2009, Reflection images from ambient seismic noise, Geophysics, 74(5), A63-A67. https://doi.org/10.1190/1.3193529
  11. Draganov, D., Wapenaar, K., and Thorbecke, J., 2004, Passive seismic imaging in the presence of white noise sources, The Leading Edge, 23(9), 889-892. https://doi.org/10.1190/1.1803498
  12. Dziewonski, A. M., and Anderson, D. L., 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25(4), 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
  13. Ferrandis, J., Mateeva, A., Jorgensen, P., Lopez, J., and Dijkerman, H., 2009, Application of virtual-source technology to the Zuidwending gas storage project, The Leading Edge, 28(3), 296-301. https://doi.org/10.1190/1.3104073
  14. Fokkema, J. T., and van den Berg, P. M., 1993, Seismic applications of acoustic reciprocity, Elsevier Scientific Publ. Co., Inc.
  15. Hooke, R., 1665, Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon, The Royal Society.
  16. Hurich, C., and Deemer, S., 2013, Combined surface and borehole seismic imaging in a hard rock terrain: A field test of seismic interferometry, Geophysics, 78(3), B103-B110. https://doi.org/10.1190/geo2012-0325.1
  17. Kang, T.-S., and Shin, J. S., 2006, Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophys. Res. Lett., 33(17), L17303-1-L17303-5. https://doi.org/10.1029/2006GL027044
  18. Kennett, B. L. N., and Engdahl, E. R., 1991, Traveltimes of global earthquake location and phase identification, Geophys. J. Int., 105(2), 429-465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
  19. Kim, K. Y., Lee, J. M., Moon, W., Baag, C.-E., Jung, H., and Hong, M. H., 2007, Crustal structure of the southern Korean peninsula from seismic waves generated by large explosions in 2002 and 2004, Pure Appl. Geophys., 164(1), 97-113. https://doi.org/10.1007/s00024-006-0149-4
  20. Lin, F.-C., Ritzwoller, M. H., and Snieder, R., 2009, Eikonal tomography: Surface wave tomography by phase front tracking across a regional broadband seismic array, Geophys. J. Int., 177(3), 1091-1110. https://doi.org/10.1111/j.1365-246X.2009.04105.x
  21. Mehta, K., Kiyashchenko, D., Jorgensen, P., Lopez, J., Ferrandis, J., and Costello, M., 2010, Virtual source method applied to crosswell and horizontal well geometries, The Leading Edge, 29(6), 712-723. https://doi.org/10.1190/1.3447785
  22. Mikesell, D., Wijk, K., Calvert, A., and Haney, M., 2009, The virtual refraction: Useful spurious energy in seismic interferometry, Geophysics, 74(3), A13-A17. https://doi.org/10.1190/1.3095659
  23. Schuster, G. T., 2001, Theory of daylight/interferometric imaging: Tutorial: 63rd Conference and Technical Exhibition, European Assoc. Geoscientists and Engineers, Extended Abstracts, A32.
  24. Schuster, G. T., 2009, Seismic Interferometry, Cambridge University Press.
  25. Snieder, R., 2004, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69(4), 046610-1-046610-8. https://doi.org/10.1103/PhysRevE.69.046610
  26. Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A., 2010, Tutorial on seismic interferometry: Part 1 - Basin principles and applications, Geophysics, 75(5), 75A195-75A209. https://doi.org/10.1190/1.3457445
  27. Wapenaar, K., Draganov, D., Thorbecke, T., and Fokkema, J., 2002, Theory of acoustic daylight imaging revised, 72nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2269-2272.
  28. Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists.