DOI QR코드

DOI QR Code

A Study on Matching Pursuit Interpolation with Moveout Correction

시간차 보정을 적용한 Matching Pursuit 내삽 기법 연구

  • Lee, Jaekang (Dept. of Earth Resources and Environmental Engineering, Hanyang Univ.) ;
  • Byun, Joongmoo (Dept. of Earth Resources and Environmental Engineering, Hanyang Univ.) ;
  • Seol, Soon Jee (Dept. of Earth Resources and Environmental Engineering, Hanyang Univ.) ;
  • Kim, Young (YK Geophysics)
  • Received : 2018.04.24
  • Accepted : 2018.05.29
  • Published : 2018.05.31

Abstract

The recent research aim of seismic trace interpolation is to effectively interpolate the data with spatial aliasing. Among various interpolation methods, the Matching Pursuit interpolation, that finds the proper combination of basis functions which can best recover traces, has been developed. However, this method cannot interpolate aliased data. Thus, the multi-component Matching Pursuit interpolation and moveout correction method have been proposed for interpolation of spatially aliased data. It is difficult to apply the multi-component Matching Pursuit interpolation to interpolating the OBC (Ocean Bottom Cable) data which is the multi-component data obtained at the ocean bottom because the isolation of P wave component is required in advance. Thus, in this study, we dealt with an effective single-component matching Pursuit interpolation method in OBC data where P-wave and S-wave are mixed and spatial aliasing is present. To do this, we proposed the Ricker wavelet based single-component Matching Pursuit interpolation workflow with moveoutcorrection and systematically investigated its effectiveness. In this workflow, the spatial aliasing problem is solved by applying constant value moveout correction to the data before the interpolation is performed. After finishing the interpolation, the inverse moveout correction is applied to the interpolated data using the same constant velocity. Through the application of our workflow to the synthetic OBC seismic data, we verified the effectiveness of the proposed workflow. In addition, we showed that the interpolation of field OBC data with severe spatial aliasing was successfully performed using our workflow.

탄성파 내삽 기법의 최근 연구방향은 공간적 알리아싱이 존재하는 자료에서의 내삽을 효과적으로 수행하는 것이다. 다양한 내삽 기법 중 기저함수를 정의하여 트레이스를 가장 잘 복원할 수 있는 기저함수의 조합을 찾아내는 Matching Pursuit 내삽 기법이 개발된 바 있다. 그러나 이 방법은 공간적 알리아싱 문제를 해결하지 못하는데 이를 해결하기 위해 다성분 Matching Pursuit 방법이 제안되었고 또한 시간차 보정(moveout correction) 방법도 소개된 바 있다. 다성분을 이용한 방법은 P파만을 갖는 다성분 자료가 획득되어야 하는데 해저면에서 다성분을 측정하는 OBC (Ocean Bottom Cable) 자료의 경우에는 P파 성분만을 분리하는 작업이 어려워 현장자료 적용이 힘들게 된다. 따라서 이 연구에서는 P파와 S파가 혼재하고 공간적 알리아싱이 존재하는 OBC 탐사 자료에서의 효과적인 단일성분 Matching Pursuit 내삽 기법을 다룬다. 이를 위해 시간차 보정을 포함하는 리커 요소파 기반의 단일성분 Matching Pursuit 내삽 기법 작업흐름도를 제안하고 그 효과를 체계적으로 살펴보았다. 이 작업흐름도는 내삽을 적용하기 전에 시간차 보정을 적용하고 다시 역 시간차 보정을 적용하여 공간적 알리아싱 문제를 해결하였다. 제안한 작업흐름도를 OBC 측정을 가정한 합성탄성파탐사 자료에 적용하여 그 효과를 검증하였고 현장자료에 적용함으로써 공간적 알리아싱이 심한 경우에도 내삽이 가능함을 확인하였다.

Keywords

References

  1. Choi, J., Byun, J., and Seol, S. J., 2014, Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing, Geophys. and Geophys. Explor., 17(2), 88-94 (in Korean with English abstract). https://doi.org/10.7582/GGE.2014.17.2.088
  2. Choi, J., Byun, J., Seol, S. J., and Kim, Y., 2016, Wavelet-based multicomponent matching pursuit trace interpolation, Geophys. J. Int., 206(3), 1831-1846. https://doi.org/10.1093/gji/ggw246
  3. Han, B., Seol, S. J., and Byun, J., 2012, Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions, Explor. Geophys., 43(2), 77-86. https://doi.org/10.1071/EG12015
  4. Kamil, Y. I., Vassallo, M., Brouwer, W., Nichols, D., Cowman, M., and Ozbek, A., 2014, Joint crossline reconstruction and 3D deghosting of shallow seismic events from multimeasurement streamer data, 76th Ann. Internat. Mtg., EAGE Expanded Abstracts, doi: 10.3997/2214-4609.20141450.
  5. Kim, B., Jeong, S., Byun, J., and Seol, S. J., 2012, Curvelet transform-based POCS in fk domain, 82nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1-5.
  6. Liu, B., and Sacchi, M. D., 2004, Minimum weighted norm interpolation of seismic records, Geophysics, 69(6), 1560-1568. https://doi.org/10.1190/1.1836829
  7. Mallat, S. G., and Zhang, Z., 1993, Matching pursuits with time- frequency dictionaries, IEEE Trans. Signal process, 41(12), 3397-3415. https://doi.org/10.1109/78.258082
  8. Naghizadeh, M., and Sacchi, M. D., 2010, Seismic data reconstruction using multidimensional prediction filters, Geophys. Prospect, 58(2), 157-173. https://doi.org/10.1111/j.1365-2478.2009.00805.x
  9. Schonewille, M., Klaedtke, A., and Vigner, A., 2009, Anti-alias anti-leakage Fourier transform, 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3249-3253.
  10. Spitz, S., 1991, Seismic trace interpolation in the FX domain, Geophysics, 56(6), 785-794. https://doi.org/10.1190/1.1443096
  11. Ozbek, A., Ozdemir, A. K., and Vassallo, M., 2009, Interpolation by matching pursuit, 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3254-3258.
  12. Porsani, M. J., 1999, Seismic trace interpolation using half-step prediction filters, Geophysics, 64(5), 1461-1467. https://doi.org/10.1190/1.1444650
  13. Robertsson, J. O., Moore, I., Vassallo, M., Özdemir, K., van Manen, D. J., and Ozbek, A., 2008, On the use of multicomponent streamer recordings for reconstruction of pressure wavefields in the crossline direction, Geophysics, 73(5), A45-A49. https://doi.org/10.1190/1.2953338
  14. Vassallo, M., Ozbek, A., Ozdemir, K., and Eggenberger, K., 2010, Crossline wavefield reconstruction from multi- component streamer data: Part 1-Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient, Geophysics, 75(6), WB53-WB67. https://doi.org/10.1190/1.3496958
  15. Xu, S., Zhang, Y., Pham, D., and Lambare, G., 2005, Antileakage Fourier transform for seismic data regularization, Geophysics, 70(4), V87-V95. https://doi.org/10.1190/1.1993713
  16. Yang, P., Gao, J., and Chen, W., 2012, Curvelet-based POCS interpolation of nonuniformly sampled seismic records, J. Appl. Geophy., 79, 90-99. https://doi.org/10.1016/j.jappgeo.2011.12.004