• Title/Summary/Keyword: Seismic performance reinforcement

Search Result 415, Processing Time 0.035 seconds

Seismic Performance of Circular Columns considering Transverse Steel Details (횡방향철근 상세에 따른 원형기둥의 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

An Experimental Study on Seismic Reinforcement of Dry Type Buckling Restrained Braces Laterally Using Buckling Restrained Rings (좌굴방지링으로 횡지지된 건식형 좌굴방지가새 내진보강에 대한 실험적 연구)

  • Lee, Seon Jae;Moon, Hee Suk;Park, Byung Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2022
  • This study is conducted to verify the seismic reinforcement effects of internally inserted buckling-restrained braces supported laterally by buckling-restrained rings for the seismic reinforcement of existing reinforced concrete buildings with non-seismic details. First, to evaluate the performance of KDS, the hysteretic characteristics of buckling-restrained braces are verified, and it is discovered that they satisfy the conformance criteria of the displacement-dependent damping device. Three full-scale, two-story reinforced concrete framework specimens are prepared to verify the seismic reinforcement effects, and the proposed buckling-restrained braces are bolstered with single diagonal and V-shaped braces to be compared with non-reinforced specimens. By performing a comparison with non-reinforced specimens that present intensive shear cracks at the bottom of first-floor columns, it is revealed that the maximum load and energy dissipation of specimens reinforced with the proposed buckling restrained braces, in which the structural damage extends evenly throughout the system, are approximately 4 and 6.2 times higher, respectively, which proves the effectiveness of the proposed seismic reinforcement method.

Study of exterior beam-column joint with different joint core and anchorage details under reversal loading

  • Rajagopal, S.;Prabavathy, S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.809-825
    • /
    • 2013
  • In the present study, in reinforced concrete structures, beam-column connections are one of the most critical regions in areas with seismic susceptibility. Proper anchorage of reinforcement is vital to enhance the performance of beam-column joints. Congestion of reinforcement and construction difficulties are reported frequently while using conventional reinforcement detailing in beam-column joints of reinforced concrete structures. An effort has been made to study and evaluate the performance of beam-column joints with joint detailing as per ACI-352 (mechanical anchorage), ACI-318 (conventional hooks bent) and IS-456(full anchorage conventional hooks bent) along with confinement as per IS-13920 and without confinement. Apart from finding solutions for these problems, significant improvements in seismic performance, ductility and strength were observed while using mechanical anchorage in combination with X-cross bars for less seismic prone areas and X-cross bar plus hair clip joint reinforcement for higher seismic prone areas. To evaluate the performances of these types of anchorages and joint details, the specimens were assembled into four groups, each group having three specimens have been tested under reversal loading and the results are presented in this paper.

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

A Study for the Application Technique of Recently Developed Performance-strengthening Systems in Urban Railway (도시철도 내진성능 보강시스템의 현장부설 적용성 연구)

  • Kim, Ki-Hong;Han, Young-Sung;Han, Dong-Eun;Hur, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.843-848
    • /
    • 2011
  • Constructed structures, before the seismic design codes are established was not designed an earthquake resist. So, evaluate seismic performance of structures and appropriate strengthening are required. To seismic reinforcement of railway structures, literature investigation was conducted about a variety of domestic and international processing enhance and repair the existing maintenance. Also, facilities standardization group, in research group of railway standards, when applied the developed seismic reinforcement system to the railway, conducted the survey that can occur the uniqueness for construction. These specific changes that reflect the seismic reinforcement of the system was required to establish application requirements.

  • PDF

Study on Selection of Nuclear Seismic Fragile Equipment and Its Enhancement of Seismic Performance (주요기기 내진성능 상향을 위한 설비보강 및 취약부 도출연구)

  • Son, Jung-Dae;Koo, Gyeong-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • In order to investigate the ways to enhance the seismic performance of APR1400 seismic fragile equipment by direct design changes, four equipment such as Reactor Vessel Support, Integrated Head Assembly, Remote Shutdown Console, and Pressurizer are reviewed using information of the main dimensions, seismic stress evaluation results, design FRS, etc. in this paper. In addition to the direct reinforcement of equipments, the feasibility of seismic isolation for the safety related cabinet is also investigated and the actual adaption plan of a commercial spring-damper system is briefly reviewed.

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Proposal and Performance Verification of a Seismic Adapter for Steel Brace Connections for In-plane Reinforcement of School Buildings (학교 건축물의 면내보강을 위한 강재브레이스 접합용 내진어댑터의 상세 제안 및 성능검증)

  • Seokjae Heo;Lan Chung;In-Kwan Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.162-171
    • /
    • 2023
  • In this study, The details for a seismic adapter designed to easily connect concrete structures and reinforcement materials for the in-plane reinforcement of aged structures were proposed. Proposed seismic adapter was tested for performance using a dynamic simulation on a 2-story column-beam structure, scaled to half of the real size. The experimental results showed that the reinforced test specimens using the seismic adapter improved their energy dissipation capacity by 3.5 times compared to the non-reinforced specimens. It was confirmed that the seismic adapter experienced no damage within its general usage range, thus proving its effectiveness. Subsequently, upon loading until the limit of deformation (a deformation angle of 3.3%), it was observed that one of the M10 bolts connecting the adapter and the reinforcement at the lower part of the first floor broke. Considering this finding, when applying seismic retrofitting in real situations, emphasis should be placed on the design of the bolts and anchors connecting the seismic adapter. This aspect warrants further research for validation.

A Parametric Study on Seismic Performance of Internally Confined Hollow RC Columns (내부 구속 중공 RC 기둥의 내진성능에 관한 매개 변수 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Jung-Hun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, there is to increase interest in seismic performance of piers. Hollow section is applied to increasing the seismic performance of piers. However, hollow RC pier becomes the biaixial confining state because hollow part is not confined. The pier is developed brittle failure from inner face in hollow part. A tube is inserted in hollow part to become the weakness. This is ICH RC(Internally Confined Hollow RC) pier. This pier is enhanced stiffness, strength, and ductility by core concrete has triaxial confining stress. In this paper is researched about parameters effect the seismic performance. Parameters are hollow ratio, transverse reinforcement, longitudinal reinforcement, and concrete strength.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.